Recall

Axioms of probability (Kolmogorov)

Axiom 1: $0 \leq P(E) \leq 1$; Axiom 2: $P(S)=1$; Axiom 3: For disjoint (mutually exclusive) events $\left(E_{n}\right)_{n=1}^{\infty}, P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right)$.

From the above axioms, we can deduce the following properties of probability $P(\cdot)$.

Basic properties of $P(\cdot)$

- $P(\emptyset)=0$
- $P\left(E^{c}\right)=1-P(E)$
- (monotone) $P(E) \leq P(F)$ if $E \subset F$.
- (inclusion-exclusion) $P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{1 \leq i<j \leq n} P\left(E_{i} E_{j}\right)+\cdots+(-1)^{n+1} P\left(E_{1} \cdots E_{n}\right)$
- (finite additive) For disjoint $\left(E_{i}\right)_{i=1}^{n}, P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)$
- (countable subadditive) $P\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} P\left(E_{n}\right)$
- (continuous) Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of events.

$$
\left\{\begin{array}{l}
E_{n} \subset E_{n+1} \Longrightarrow P\left(\lim _{n \rightarrow \infty} E_{n}\right)=P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right) \\
E_{n} \supset E_{n+1} \Longrightarrow P\left(\lim _{n \rightarrow \infty} E_{n}\right)=P\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)
\end{array}\right.
$$

Basic concepts

Example 1. Roll a die repeatedly until the first 6 appears and then we stop the experiment.
(a) What's the sample space?
(b) Let $n \geq 1$. Explicitly describle the event E_{n} that we roll the die for $\leq n$ times and stop.
(c) What's the event $\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}$?

Solution. (a) The sample space

$$
S=\bigcup_{k=0}^{\infty}\left\{\left(i_{1}, \ldots, i_{k}, 6\right): i_{1}, \ldots i_{k} \in\{1, \ldots 5\}\right\} \cup\left\{\left(i_{k}\right)_{k=1}^{\infty}: \forall k \in \mathbb{N}, i_{k} \in\{1, \ldots 5\}\right\}
$$

with convention $\left\{\left(i_{1}, i_{0}, 6\right)\right\}=\{(6)\}$. The first part represents the outcomes that we stop the experiment after rolling finite times while the last set consists of the outcomes that we never stop.
(b) Similarly, $E_{n}=\bigcup_{k=1}^{n-1}\left\{\left(i_{1}, \ldots, i_{k}, 6\right): i_{1}, \ldots i_{k} \in\{1, \ldots 5\}\right\} \cup\{(6)\}$.
(c) From the expressions of S and E_{n}, we have

$$
\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}=\left\{\left(i_{k}\right)_{k=1}^{\infty}: \forall k \in \mathbb{N}, i_{k} \in\{1, \ldots 5\}\right\}
$$

which is the event that we never stop the experiment.

Sample spaces with equally likely outcomes

Example 2. Roll a die twice. What's the probability that the second number is larger than the first?

Solution. Explicitly write down the sample space $S=\{(i, j): i, j \in\{1, \ldots, 6\}\}$ and the event $E=\{(i, j): i<j\}=\{(1,2), \ldots(1,5), \ldots,(5,6)\}$. Then $|S|=36$ and $|E|=5+4+\cdots+1=15$. By the assumption on equal probabilities, we have $P(E)=15 / 36=5 / 12$.

Example 3. In a game, the total $52(4 \times 13)$ cards are dealt out to 4 players. What's the probability of
(a) the event A that one of the players receives all 13 heart \triangle cards?
(b) the event B that each player receives 1 ace?
(c) the event C that each player receives at least 1 heart \circlearrowleft cards?

Solution. (a) Let $E_{i},(i=1, \ldots, 4)$ be the event that the player i receives 13 hearts. Then $P\left(E_{i}\right)=1 /\binom{52}{13}$ which can the obtained by reasoning: choose 13 cards for the player i from 52 cards, only 1 selection consists of all heart cards.
Since there are only 13 heart cards, any two players can not have all heart cards at the same time, i.e., E_{i} are disjoint. By finite additivity,

$$
P(A)=P\left(\bigcup_{i=1}^{4} E_{i}\right)=\sum_{i=1}^{4} P\left(E_{i}\right)=\frac{4}{\binom{52}{13}} \approx 6.3 \times 10^{-12} .
$$

(b) There are $\binom{52}{13,13,13,13}$ ways of dealing out 52 cards to 4 players with equal probabilities. To determine the outcomes making event B happen, we first determine the positions of 4 aces which results in 4 ! permutations, then we count the ways to distribute the remaining $52-4=48$ cards to the 4 players. Hence

$$
P(B)=\frac{4!\times\left(\begin{array}{c}
12,12,12,12
\end{array}\right)}{\binom{52}{13,13,13,13}} \approx 0.1055 .
$$

(c) Let $C_{i}(i=1, \ldots, 4)$ denote the event that the player i does not receive heart cards. By taking the complement,

$$
P(C)=1-P\left(\bigcup_{i=1}^{4} C_{i}\right)
$$

To obtain $P\left(\bigcup_{i=1}^{4} C_{i}\right)$, we will use the inclusion-exclusion principle. It follows from the similar arguments of (a) that

$$
\begin{aligned}
& i=1, \ldots 4 \\
& 1 \leq i<j \leq 4 \\
& 1 \leq i<j<k \leq 4 \\
& P\left(C_{i}\right)=\frac{\binom{39}{13}}{\binom{52}{13}} \\
& P\left(C_{i} C_{j}\right)=\frac{\binom{39}{26}}{\binom{26}{26}}
\end{aligned}
$$

Notice $P\left(C_{1} C_{2} C_{3} C_{4}\right)=0$ since the 4 players cannot avoid having heard cards at the same time. Hence by inclusion-exclusion principle,

$$
P\left(\bigcup_{i=1}^{4} C_{i}\right)=4 \times \frac{\binom{39}{13}}{\binom{52}{13}}-\binom{4}{2} \times \frac{\binom{39}{26}}{\binom{56}{26}}+\binom{4}{3} \times \frac{\binom{39}{39}}{\binom{52}{39}}-0
$$

Thus $P(C)=1-P\left(\bigcup_{i=1}^{4} C_{i}\right) \approx 0.9488$.

