Recall

Conditional distribution

- Let X, Y be discrete r.v.s. Then given $\{Y=y\}$ with $P(Y=y)>0$,
- the conditional PMF: $p_{X \mid Y}(x \mid y):=P(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)}, \forall x \in \mathbb{R}$.
- the conditional CDF: $F_{X \mid Y}(t \mid y):=P(X \leq t \mid Y=y)=\sum_{x \leq t} p_{X \mid Y}(x \mid y), \forall t \in \mathbb{R}$.
X, Y independent $\Longleftrightarrow p_{X \mid Y}(x \mid y)=p_{X}(x), \forall x, y \in \mathbb{R}$ with $P(Y=y)>0$.
- Let X, Y be joint continuous r.v.s. Then for $y \in \mathbb{R}$ with $f_{Y}(y)>0$,
- the conditional PDF: $f_{X \mid Y}(x \mid y):=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}, \forall x \in \mathbb{R}$.
- the conditional CDF: $F_{X \mid Y}(t \mid y):=\int_{-\infty}^{t} f_{X \mid Y}(x \mid y) d x, \forall t \in \mathbb{R}$
X, Y independent $\Longleftrightarrow f_{X \mid Y}(x \mid y)=f_{X}(x), \forall x, y \in \mathbb{R}$ with $f_{Y}(y)>0$.,

Joint distributions of functions of random variables

Let X_{1}, X_{2} be joint continuous random variables. For $i=1,2$, let $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ be some function and define $Y_{i}=g_{i}\left(X_{1}, X_{2}\right)$. Suppose
(i) for $i=1,2$, there exists $h_{i}: \mathbb{R} \rightarrow \mathbb{R}$ uniquely determined by $h_{i}\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right)\right)=x_{i}, \forall x_{i} \in \mathbb{R}$.
(ii) the partial derivatives $\frac{\partial g_{i}}{\partial x_{j}}, i, j=1,2$ are continuous and the Jacobian $J\left(x_{1}, x_{2}\right) \neq 0$ for $x_{1}, x_{2} \in \mathbb{R}$.

Then for $y_{1}, y_{2} \in \mathbb{R}$,

$$
\begin{align*}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)\left|J\left(x_{1}, x_{2}\right)\right|^{-1} \\
& =f_{X_{1}, X_{2}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right)\left|J\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right)\right|^{-1} . \tag{1}
\end{align*}
$$

Examples

Example 1. There is a box containing 6 balls $\left\{\begin{array}{ll}3 & \text { blue } \\ 2 & \text { green } \\ 1 & \text { yellow. }\end{array}\right.$ Randomly select a ball from the box with replacement for 10 times. Let $\left\{\begin{array}{l}B \text { be the number of blue balls } \\ G \text { be the number of green balls } \\ Y \text { be the number of yellow balls. }\end{array}\right.$ Find the conditional PMF of B, Y given G.

Solution. Fix any $g \in\{0, \ldots, 10\}$. For any $b, y \in\{0, \ldots, 10\}$ with $b+g+y=10$,

$$
\begin{aligned}
p_{B, Y \mid G}(b, y \mid g) & =\frac{P(B=b, G=g, Y=y)}{P(G=g)} \\
& =\frac{\binom{10}{b, g, y}\left(\frac{1}{2}\right)^{b}\left(\frac{1}{3}\right)^{g}\left(\frac{1}{6}\right)^{y}}{\binom{10}{g}\left(\frac{1}{3}\right)^{g}\left(1-\frac{1}{3}\right)^{10-g}} \\
& =\binom{b+y}{b}\left(\frac{3}{4}\right)^{b}\left(\frac{1}{4}\right)^{y} .
\end{aligned}
$$

Hence given $\{G=g\}$ where $g=0, \ldots, 10, B$ and Y are respectively the number of successes and that of failures in a Binomial experiment $\sim \operatorname{Bin}(10-g, 3 / 4)$.

Example 2. Let X, Y be r.v.s. with joint PDF

$$
f(x, y)= \begin{cases}\frac{4 y}{x} & 0<x<1,0<y<x \\ 0 & \text { otherwise }\end{cases}
$$

Find the conditional PDF of Y given X and the PDF of $X+Y$.
Solution. First determine the PDF of X. For $x \in(0,1)$,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{x} \frac{4 y}{x} d y=\frac{1}{x} \int_{0}^{x} 4 y d y=2 x
$$

Then given $X=x \in(0,1)$, for $y \in \mathbb{R}$,

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f(x)}=\frac{2 y}{x^{2}} \chi_{(0, x)}(y) .
$$

Next we determine the PDF of $X+Y$. (Can we use the convolution formula? No, X, Y are not independent.) Define

$$
\left\{\begin{array} { l }
{ U = X + Y } \\
{ V = X }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
X=V \\
Y=U-V
\end{array}\right.\right.
$$

Then (i) is satisfied. Since the Jacobian for the map $(x, y) \mapsto(x+y, x)$ is

$$
J(x, y)=\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-1
$$

we have (ii) holds. Notice that $0<x<1,0<y<x$ implies $0<u<2, u / 2<v<u$.
Then by (1),

$$
\begin{aligned}
f_{U, V}(u, v) & =f(x, y)|J(x, y)|^{-1} \\
& =f(v, u-v) \times 1 \\
& = \begin{cases}\frac{4(u-v)}{v} & 0<u<2, u / 2<v<u \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Finally the PDF of $U=X+Y$ is

$$
\begin{aligned}
f_{X+Y}(u) & =f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v \\
& = \begin{cases}\int_{u / 2}^{u} \frac{4(u-v)}{v} d v & 0<u<1 \\
\int_{u / 2}^{1} \frac{4(u-v)}{v} d v & 1<u<2\end{cases} \\
& = \begin{cases}(4 \ln 2-2) u & 0<u<1 \\
-4 u \ln u+(4 \ln 2+2) u-4 & 1<u<2 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

