THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH3280A Introductory Probability 2023-2024 Term 1
Suggested Solutions of Midterm Exam

Q1 (10pts)

Suppose that E, F, G are independent events in a probability space. Let E^{c} and F^{c} denote the complements of E and F, respectively.
(a) Show that E^{c} and F^{c} are independent.

Since

$$
\begin{aligned}
P\left(E^{c} \cap F^{c}\right) & =P\left((E \cup F)^{c}\right) \\
& =1-P(E \cup F) \\
& =1-P(E)-P(F)+P(E \cap F) \quad \text { (Inclusion-exclusion identity) } \\
& =1-P(E)-P(F)+P(E) P(F) \quad(E \text { and } F \text { are independent) } \\
& =(1-P(E))(1-P(F)) \\
& =P\left(E^{c}\right) P\left(F^{c}\right),
\end{aligned}
$$

then by the definition, E^{c} and F^{c} and independent.
(b) Is $E \cup F$ independent of G ? Justify your answer.

Since

$$
\begin{aligned}
P((E \cup F) \cap G)= & P((E \cap G) \cup(F \cap G)) \\
& (\text { Inclusion-exclusion identity) } \\
= & P(E \cap G)+P(F \cap G)-P((E \cap G) \cap(F \cap G)) \\
= & P(E \cap G)+P(F \cap G)-P(E \cap F \cap G) \\
& (E, F, G \text { are independent }) \\
= & P(E) P(G)+P(F) P(G)-P(E) P(F) P(G) \\
= & {[P(E)+P(F)-P(E) P(F)] P(G) } \\
= & {[P(E)+P(F)-P(E \cap F)] P(G) } \\
= & P(E \cup F) P(G),
\end{aligned}
$$

then by the definition, $E \cup F$ and G are independent.

Q2 (15pts)

Suppose events A, B, and C are independent with probabilities $1 / 2,1 / 6$, and $1 / 3$ respectively. Calculate the following probabilities:
(a) $P(A \cap B \cap C)$.

Since A, B, C are independent, then

$$
P(A \cap B \cap C)=P(A) P(B) P(C)=\frac{1}{2} \times \frac{1}{6} \times \frac{1}{3}=\frac{1}{36} .
$$

(b) $P(A \cup B \cup C)$.

By the Inclusion-exclusion identity,

$$
\begin{aligned}
P(A \cup B \cup C) & =P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C) \\
& =P(A)+P(B)+P(C) \\
& -P(A) P(B)-P(A) P(C)-P(B) P(C)+P(A) P(B) P(C) \\
& =\frac{1}{2}+\frac{1}{6}+\frac{1}{3}-\frac{1}{2} \times \frac{1}{6}-\frac{1}{2} \times \frac{1}{3}-\frac{1}{6} \times \frac{1}{3}+\frac{1}{2} \times \frac{1}{6} \times \frac{1}{3} \\
& =\frac{13}{18} .
\end{aligned}
$$

(c) P (exactly one of the three events occurs).

Note that the event $E:=\{$ exactly one of the three events occurs $\}$ can be written as

$$
[(A \cup B \cup C) \backslash(B \cup C)] \cup[(A \cup B \cup C) \backslash(A \cup C)] \cup[(A \cup B \cup C) \backslash(A \cup B)]
$$

Because A, B, C are independent, then

$$
\begin{aligned}
& P(B \cup C)=P(B)+P(C)-P(B) P(C)=\frac{4}{9} \\
& P(A \cup C)=P(A)+P(C)-P(A) P(C)=\frac{2}{3} \\
& P(A \cup B)=P(A)+P(B)-P(A) P(B)=\frac{7}{12}
\end{aligned}
$$

Since the events $(A \cup B \cup C) \backslash(B \cup C),(A \cup B \cup C) \backslash(A \cup C)$ and $(A \cup B \cup C) \backslash(A \cup B)$ are disjoint, then

$$
\begin{aligned}
P(E) & =P((A \cup B \cup C) \backslash(B \cup C)) \\
& +P((A \cup B \cup C) \backslash(A \cup C))+P((A \cup B \cup C) \backslash(A \cup B)) \\
& =P(A \cup B \cup C)-P(B \cup C) \\
& +P(A \cup B \cup C)-P(A \cup C)+P(A \cup B \cup C)-P(A \cup B) \\
& =\frac{13}{18}-\frac{4}{9}+\frac{13}{18}-\frac{2}{3}+\frac{13}{18}-\frac{7}{12} \\
& =\frac{17}{36} .
\end{aligned}
$$

Q3 (10pts)

Two cards are randomly chosen, without replacement, from an ordinary deck of 52 playing cards. Compute the probability that they have the different values.

Let A be the event that the chosen two cards have the different values. And let S be the sample space.
First, we need to choose two different values from the total 13 values. There are $\binom{13}{2}$ possible choices. Denote the two different values by a and b. Second, since there are four cards of each value, then in order to choose one card of value a and one card of value b, there are 4^{2} possible choices. It follows that $|A|=\binom{13}{2} \times 4^{2}$.
Therefore,

$$
P(A)=\frac{|A|}{|S|}=\frac{\binom{13}{2} \times 4^{2}}{\binom{52}{2}}=\frac{16}{17} .
$$

Q4 (16pts)

A coin having probability p of landing on heads is tossed repeatedly until it comes up to the second head. Let X denote the numbers of times we have to toos the coin until it comes up the second head.
(a) Calculate $P(X=2)$ and $P(X=3)$.

Use H to denote the head, and T to denote the tail. Then

$$
\begin{gathered}
P(X=2)=P\{(H, H)\}=p \times p=p^{2}, \\
P(X=3)=P\{(H, T, H),(T, H, H)\}=p \cdot(1-p) \cdot p+(1-p) \cdot p \cdot p=2 p^{2}(1-p) .
\end{gathered}
$$

(b) Calculate $P(X=n)$ for integers $n \geq 2$.

Note that the event $\{X=n\}$ it equivalent to the event that the n-th trial is head, and there are $(n-2)$ tails and one head among the first $(n-1)$ trials. Since there are $\binom{n-1}{1}$ possible choices to choose the time that the coin shows up head among the first $(n-1)$ trials, and by the independence,

$$
P(X=n)=\binom{n-1}{1} p \cdot(1-p)^{n-2} \cdot p=(n-1) p^{2}(1-p)^{n-2}
$$

Q5 (14pts)

Let Z be a standard normal random variable.
(a) Find the probability density function of $X=3 Z$.

$$
E[X]=3 E[Z]=0, \operatorname{Var}(X)=3^{2} \operatorname{Var}(Z)=3^{2},
$$

we have $X \sim N\left(0,3^{2}\right)$. Then

$$
f(x)=\frac{1}{3 \sqrt{2 \pi}} e^{-\frac{x^{2}}{18}}, x \in \mathbb{R}
$$

(b) Find $E[Y]$ for $Y=Z^{2}$.

$$
E[Y]=E\left[Z^{2}\right]=\operatorname{Var}(Z)+E[Z]^{2}=1
$$

Q6 (10pts)

Let X be a Poisson random variable with parameter λ. Calculate the conditional probability $P\{X=2 \mid X>1\}$.

$$
\begin{aligned}
P\{X=2 \mid X>1\} & =\frac{P\{X=2, X>1\}}{P\{X>1\}} \\
& =\frac{P\{X=2\}}{1-P\{X=1\}-P\{X=0\}} \\
& =\frac{\frac{\lambda^{2}}{2} e^{-\lambda}}{1-\lambda e^{-\lambda}-e^{-\lambda}} \\
& =\frac{\lambda^{2} e^{-\lambda}}{2-2 \lambda e^{-\lambda}-2 e^{-\lambda}} .
\end{aligned}
$$

Q7 (10pts)

Box A contains 2 black and 5 white balls, whereas box B contains 1 black and 1 white ball. A ball is randomly chosen from box A and transferred to box B. Then a ball is randomly selected from box B. What is the probability that the ball selected from box B is black?
Denote the event "the ball chosen from box A is black" by A_{b}, and A_{b}^{c} its complement. Denote the event "the ball chosen from box B is black after a ball randomly chosen from box A is transferred to box B " by B_{b}. Then by law of total probability,

$$
\begin{aligned}
P\left(B_{b}\right) & =P\left(B_{b} \mid A_{b}\right) P\left(A_{b}\right)+P\left(B_{b} \mid A_{b}^{c}\right) P\left(A_{b}^{c}\right) \\
& =\frac{2}{3} \times \frac{2}{7}+\frac{1}{3} \times \frac{5}{7} \\
& =\frac{3}{7} .
\end{aligned}
$$

Q8 (15pts)

The probability density function of a continuous random variable X is given by

$$
f(x)= \begin{cases}x e^{-x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $P\{1 \leq X \leq 2\}$;
(b) Find $E[X]$;
(c) Find $E\left[X^{-1}\right]$.
(a) By integration by parts,

$$
\begin{aligned}
P\{1 \leq X \leq 2\} & =\int_{1}^{2} x e^{-x} d x \\
& =\left[-x e^{-x}\right]_{1}^{2}+\int_{1}^{2} e^{-x} d x \\
& =-2 e^{-2}+e^{-1}+\left[-e^{-x}\right]_{1}^{2} \\
& =2 e^{-1}-3 e^{-2} .
\end{aligned}
$$

(b) By integration by parts,

$$
\begin{aligned}
E[X] & =\int_{0}^{+\infty} x f(x) d x \\
& =\int_{0}^{+\infty} x^{2} e^{-x} d x \\
& =\left[-x^{2} e^{-x}\right]_{0}^{+\infty}+2 \int_{0}^{+\infty} x e^{-x} d x \\
& =2\left[-x e^{-x}\right]_{0}^{+\infty}+2 \int_{0}^{\infty} e^{-x} d x \\
& =2
\end{aligned}
$$

(c)

$$
\begin{aligned}
E\left[X^{-1}\right] & =\int_{0}^{+\infty} x^{-1} f(x) d x \\
& =\int_{0}^{+\infty} e^{-x} d x \\
& =\left[-e^{-x}\right]_{0}^{+\infty} \\
& =1
\end{aligned}
$$

