TA's solution*i to 3093 assignment 8

Ch5, Ex3. (3 marks)
(a) We follow the hint. Since there exist $A_{1}, A_{2}>1$ s.t. $|\widehat{f}(\xi)| \leq \frac{A_{1}}{|\xi|^{1+\alpha}}$ for all $|\xi|>A_{2}$, we have

$$
|\widehat{f}(\xi)| \leq \frac{\left(1+A_{2}^{1+\alpha}\right) \cdot\left(\sup _{t \in\left[-A_{2}, A_{2}\right]}|\widehat{f}(t)|\right)}{1+|\xi|^{1+\alpha}}+\frac{2 A_{1}}{1+|\xi|^{1+\alpha}}
$$

for all $\xi \in \mathbb{R}$ 围 Therefore, the Fourier inversion formula holds. It follows that for $h \neq 0$,

$$
\begin{aligned}
|f(x+h)-f(x)| & =\left|\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2 i \pi x \xi}\left(e^{2 i \pi h \xi}-1\right) d \xi\right| \\
& \ll \int_{-1 /|h|}^{1 /|h|}\left|\widehat{f}(\xi)\left(e^{2 i \pi h \xi}-1\right)\right| d \xi+\int_{\mathbb{R} \backslash[-1 /|h|, 1 / \mid h]]}|\widehat{f}(\xi)| d \xi \\
& \ll \int_{-1 /|h|}^{1 /|h|}|\widehat{f}(\xi)||h \xi| d \xi+\int_{1 /|h|}^{\infty} \frac{1}{\xi^{1+\alpha}} d \xi \\
& \ll \int_{0}^{1 /|h|} \frac{|h| \xi}{\xi^{1+\alpha}} d \xi+\int_{1 /|h|}^{\infty} \frac{1}{\xi^{1+\alpha}} d \xi \\
& \ll|h|^{\alpha} .
\end{aligned}
$$

Else if $h=0$, then the above holds plainly. Done.
(b) It is proved by contradiction. If \widehat{f} is not continuous, then by definition it is not in $\mathcal{M}(\mathbb{R})$. Else, \widehat{f} is continuous. Suppose there exists $\varepsilon \in(0,1)$ s.t. $|\widehat{f}(\xi)| \ll \frac{1}{|\xi|^{1+\varepsilon}}$ for all large ξ. Then by the result of part (a), for all small $h \neq 0$ we have

$$
\left|\frac{1}{\log (1 /|h|)}\right|=|f(h)-f(0)| \ll|h|^{\varepsilon} .
$$

This is a contradiction however, because when $h \rightarrow 0$, we have by L'Hospital's Rule

$$
\left|\frac{|h|^{-\varepsilon}}{\log (1 /|h|)}\right| \rightarrow \infty
$$

Since $\frac{1}{1+|\xi|^{2}} \leq \frac{1}{|\xi|^{1+\varepsilon}}$ for all $|\xi| \geq 1$, it follows that \widehat{f} is not in $\mathcal{M}(\mathbb{R})$.
Ex5. (3 marks)
(a) We first show that \widehat{f} is continuous. Fix an $\varepsilon>0$. Since f is of moderate decrease, there is an $A>0$ s.t.

$$
\int_{\mathbb{R} \backslash[-A, A]}|f(x)| d x<\varepsilon .
$$

[^0]And for this fixed A, there is an $\delta>0$ s.t. for all h with $|h|<\delta$, we have

$$
\int_{[-A, A]}\left|f(x)\left(e^{-2 i \pi x h}-1\right)\right| d x \ll \int_{[-A, A]}|f(x) x h| d x=|h| \int_{[-A, A]}|f(x) x| d x<\varepsilon
$$

As a result, independent of ξ, there is an $\delta>0$ s.t. for all h with $|h|<\delta$, we have

$$
\begin{aligned}
|\widehat{f}(\xi+h)-\widehat{f}(\xi)| & =\left|\int_{-\infty}^{\infty} f(x) e^{-2 i \pi x \xi}\left(e^{-2 i \pi x h}-1\right) d x\right| \\
& \ll \int_{\mathbb{R} \backslash[-A, A]}|f(x)| d x+\int_{[-A, A]}\left|f(x)\left(e^{-2 i \pi x h}-1\right)\right| d x \ll \varepsilon
\end{aligned}
$$

which was to be demonstrated.

Next we show that $\widehat{f}(\xi) \rightarrow 0$ when $|\xi| \rightarrow \infty$. For $\xi \neq 0$ we have

$$
\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 i \pi x \xi} d x=\int_{-\infty}^{\infty} f\left(x-\frac{1}{2 \xi}\right) e^{-2 i \pi\left(x-\frac{1}{2 \xi}\right) \xi} d x=e^{i \pi} \int_{-\infty}^{\infty} f\left(x-\frac{1}{2 \xi}\right) e^{-2 i \pi x \xi} d x
$$

whence

$$
\widehat{f}(\xi)=\frac{1}{2} \int_{-\infty}^{\infty}\left(f(x)-f\left(x-\frac{1}{2 \xi}\right)\right) e^{-2 i \pi x \xi} d x
$$

Fix an $\varepsilon>0$. Since f is of moderate decrease, there is an $A>10$ s.t.

$$
\int_{\mathbb{R} \backslash[-A+1, A-1]}|f(x)| d x<\varepsilon
$$

It follows that for any $|\xi|>1$, we have

$$
\int_{\mathbb{R} \backslash[-A, A]}\left|f\left(x-\frac{1}{2 \xi}\right)\right| d x<\varepsilon
$$

and so

$$
\int_{\mathbb{R} \backslash[-A, A]}\left|f(x)-f\left(x-\frac{1}{2 \xi}\right)\right| d x \leq \int_{\mathbb{R} \backslash[-A, A]}|f(x)|+\left|f\left(x-\frac{1}{2 \xi}\right)\right| d x \ll \varepsilon
$$

For this fixed A, since f is continuous on $[-A-1, A+1]$, f is uniformly continuous on $[-A-1, A+1]$. Therefore, there exists $R>0$ s.t. for all ξ with $|\xi|>R$ and for all $x \in[-A, A]$, we have

$$
\left|f(x)-f\left(x-\frac{1}{2 \xi}\right)\right|<\frac{\varepsilon}{A} .
$$

Combining the results, we see that for all ξ with $|\xi|>R$, we have

$$
\begin{aligned}
|\widehat{f}(\xi)| & =\left|\frac{1}{2} \int_{-\infty}^{\infty}\left(f(x)-f\left(x-\frac{1}{2 \xi}\right)\right) e^{-2 i \pi x \xi} d x\right| \\
& \ll \int_{\mathbb{R} \backslash[-A, A]}\left|f(x)-f\left(x-\frac{1}{2 \xi}\right)\right| d x+\int_{[-A, A]}\left|f(x)-f\left(x-\frac{1}{2 \xi}\right)\right| d x \ll \varepsilon+A \cdot \frac{\varepsilon}{A} \ll \varepsilon
\end{aligned}
$$

Done

[^1](b) Suppose we have the following result:

If f and \widehat{f} are in $\mathcal{M}(\mathbb{R})$ then $f(x)=\int \widehat{f}(\xi) e^{2 i \pi \xi x} d \xi$ for all $x \in \mathbb{R}$.

Then the question is solved immediately by noting that the zero function is in $\mathcal{M}(\mathbb{R})$.
(It seems that you have already learnt the aforementioned result from the lecture note??)
Ex9. (4 marks) We have

$$
\begin{aligned}
\int_{-R}^{R}\left(1-\frac{|\xi|}{R}\right) \widehat{f}(\xi) e^{2 i \pi x \xi} d \xi & =\int_{-R}^{R}\left(1-\frac{|\xi|}{R}\right) \int_{-\infty}^{\infty} f(t) e^{-2 i \pi \xi t} d t e^{2 i \pi x \xi} d \xi \\
& =\mathbb{\square} \int_{-\infty}^{\infty} f(t) \int_{-R}^{R}\left(1-\frac{|\xi|}{R}\right) e^{-2 i \pi \xi(t-x)} d \xi d t \\
& =\int_{-\infty}^{\infty} f(t) \widehat{g}(t-x) d t
\end{aligned}
$$

where

$$
g(y)=g_{R}(y):= \begin{cases}\left(1-\frac{|y|}{R}\right) & \text { if }|y| \leq R \\ 0 & \text { otherwise }\end{cases}
$$

We find that for $\beta \neq 0$,

$$
\begin{aligned}
\widehat{g}(\beta) & =\int_{-R}^{R}\left(1-\frac{|y|}{R}\right) e^{-2 i \pi y \beta} d y=\int_{0}^{R}\left(1-\frac{y}{R}\right) e^{-2 i \pi y \beta} d y+\int_{-R}^{0}\left(1-\frac{-y}{R}\right) e^{-2 i \pi y \beta} d y \\
& =\int_{0}^{R}\left(1-\frac{y}{R}\right) e^{-2 i \pi y \beta} d y+\int_{0}^{R}\left(1-\frac{z}{R}\right) e^{2 i \pi z \beta} d z \\
& =2 \int_{0}^{R}\left(1-\frac{y}{R}\right) \cos (2 \pi y \beta) d y \\
& =\frac{1}{\pi \beta} \int_{0}^{R}\left(1-\frac{y}{R}\right) d \sin (2 \pi y \beta)=\frac{1}{\pi \beta R} \int_{0}^{R} \sin (2 \pi y \beta) d y \\
& =\frac{1-\cos (2 \pi R \beta)}{\pi \beta R(2 \pi \beta)}=\frac{\sin ^{2}(\pi R \beta)}{(\pi \beta)^{2} R} .
\end{aligned}
$$

By $\operatorname{Ex5}(\mathrm{a})$, we know that \widehat{g} is continuous, whence by L'Hospital's Rule $\widehat{g}(0)=\lim _{\beta \rightarrow 0} \widehat{g}(\beta)=$ $\lim _{\beta \rightarrow 0} \frac{\pi R \sin (2 \pi R \beta)}{2 \beta \pi^{2} R}=R$. This shows that $\widehat{g}=\mathcal{F}_{R}$. Back to the beginning equation and noting that \mathcal{F}_{R} is an even function, we get

$$
\int_{-R}^{R}\left(1-\frac{|\xi|}{R}\right) \widehat{f}(\xi) e^{2 i \pi x \xi} d \xi=\int_{-\infty}^{\infty} f(t) \mathcal{F}_{R}(x-t) d t=\left(f * \mathcal{F}_{R}\right)(x)
$$

To finish this question, we check that $\left\{\mathcal{F}_{R}\right\}$ is a family of good kernels as $R \rightarrow \infty$.
${ }^{\boldsymbol{\varsigma}_{\text {By }}}$ Fubini theorem since (c.f. lecture note) $\int_{-R}^{R} \int_{-\infty}^{\infty}\left|f(t)\left(1-\frac{|\xi|}{R}\right) e^{-2 i \pi \xi(t-x)}\right| d t d \xi<_{R} 1$.

- Since both g and $\widehat{g}=\mathcal{F}_{R}$ are in $\mathcal{M}(\mathbb{R})$ (we have showed that \mathcal{F}_{R} is continuous at $t=0$), it follows that

$$
1=g(0)=\int_{-\infty}^{\infty} \widehat{g}(\beta) e^{2 i \pi 0 \beta} d \beta=\int_{-\infty}^{\infty} \mathcal{F}_{R}(\beta) d \beta
$$

- We note that $\mathcal{F}_{R}(\beta) \geq 0$ for all β.
- Given $\delta>0$, we have

$$
\int_{\mathbb{R} \backslash \delta, \delta]} \mathcal{F}_{R}(\beta) d \beta \ll \int_{\delta}^{\infty} R \frac{\left|\sin ^{2}(\pi R \beta)\right|}{(\pi \beta R)^{2}} d \beta \ll \frac{1}{R} \int_{\delta}^{\infty} \frac{1}{\beta^{2}} d \beta \ll \delta \frac{1}{R} \rightarrow 0 \text { as } R \rightarrow \infty .
$$

Done.

[^0]: *This solution is adapted from the work by former TAs.
 ${ }^{\dagger}$ In this solution we make use of the Vinogradov "<<" notation introduced in the TA's solution to assignment 5.
 ${ }^{\ddagger}$ The first term on the R.H.S. handles the case $\xi \in\left[-A_{2}, A_{2}\right]$. The second term handles the case $\xi \in \mathbb{R} \backslash\left[-A_{2}, A_{2}\right]$.

[^1]: §Some students do this question by using Lebesgue dominated convergence theorem which is also good.

