TA's solution to 3093 assignment 7

Ch4, Ex11. (2 marks)
We have

$$
\begin{aligned}
\int_{0}^{1}\left|f * H_{t}(x)-f(x)\right|^{2} d x & =\sum_{-\infty}^{\infty}\left|\widehat{f * H_{t}}(n)-\widehat{f}(n)\right|^{2} \\
& =\sum_{-\infty}^{\infty}\left|\widehat{f}(n) \widehat{H}_{t}(n)-\widehat{f}(n)\right|^{2}=\sum_{-\infty}^{\infty}|\widehat{f}(n)|^{2}\left(1-e^{-4 \pi^{2} n^{2} t}\right)^{2} .
\end{aligned}
$$

Since the series $\sum_{-\infty}^{\infty}|\widehat{f}(n)|^{2}$ is convergent, it follows from Weierstrass M-Test that the function $F(t):=\sum_{-\infty}^{\infty}|\widehat{f}(n)|^{2}\left(1-e^{-4 \pi^{2} n^{2} t}\right)^{2}$ is uniformly convergent on $[0, \infty)$. Therefore F is continuous on $[0, \infty)$ and so $\lim _{t \downarrow 0} F(t)=F(0)=0$. Done.

Ex12. (2 marks) ${ }^{\text {E }}$
We are given that for some 1-periodic Riemann integrable function $f(x) \sim \sum_{-\infty}^{\infty} a_{n} e^{2 i n \pi x}$, the function $u:[0,1] \times[0, \infty) \rightarrow \mathbb{C}$ defined by

$$
u(x, t):= \begin{cases}\sum_{-\infty}^{\infty} a_{n} e^{-4 \pi^{2} n^{2} t} e^{2 i n \pi x} & \text { if } t>0 \\ f(x) & \text { if } t=0\end{cases}
$$

satisfies
(a) $u_{t}=u_{x x}$ on $[0,1] \times(0, \infty)$;
(b) For $t>0$, we have $u(x, t)=\left(f * H_{t}\right)(x)$, where $H_{t}(x):=\sum_{-\infty}^{\infty} e^{-4 \pi^{2} n^{2} t} e^{2 i n \pi x}$ and "*" is defined by

$$
(g * h)(x):=\int_{0}^{1} g(x-y) h(y) d y
$$

for any 1-periodic Riemann integrable functions g, h;
(c) $\lim _{t \downarrow 0} \int_{0}^{1}|u(x, t)-f(x)|^{2} d x=0$.

Let $F:[0,2 \pi] \rightarrow \mathbb{C}, U:[0,2 \pi] \times[0, \infty) \rightarrow \mathbb{C}$, and (for $\tau>0) h_{\tau}:[0,2 \pi] \rightarrow \mathbb{C}$ be defined by

$$
F(\theta):=f\left(\frac{\theta}{2 \pi}\right), \quad U(\theta, \tau):=u\left(\frac{\theta}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right), \quad h_{\tau}(\theta):=H_{\tau /\left(4 \pi^{2}\right)}\left(\frac{\theta}{2 \pi}\right)=\sum_{-\infty}^{\infty} e^{-n^{2} \tau} e^{i n \theta}
$$

Then we have the following results:
(i) By the definition of U, we have

$$
U_{\tau}(\theta, \tau)=\frac{u_{t}\left(\frac{\theta}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right)}{4 \pi^{2}}, \quad U_{\theta}(\theta, \tau)=\frac{u_{x}\left(\frac{\theta}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right)}{2 \pi}, \quad U_{\theta \theta}(\theta, \tau)=\frac{u_{x x}\left(\frac{\theta}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right)}{4 \pi^{2}} .
$$

Hence by (a), we have $U_{\tau}=U_{\theta \theta}$ on $[0,2 \pi] \times(0, \infty)$.

[^0](ii) For $\tau>0$, by the definition of U and u, we have
$$
U(\theta, \tau)=u\left(\frac{\theta}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right)=\sum_{-\infty}^{\infty} a_{n} e^{-4 \pi^{2} n^{2} \frac{\tau}{4 \pi^{2}}} e^{2 i n \pi \frac{\theta}{2 \pi}}=\sum_{-\infty}^{\infty} a_{n} e^{-n^{2} \tau} e^{i n \theta}
$$
and by (b) we have
\[

$$
\begin{aligned}
U(\theta, \tau) & =u\left(\frac{\theta}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right)=\left(f * H_{\tau /\left(4 \pi^{2}\right)}\right)\left(\frac{\theta}{2 \pi}\right)=\int_{0}^{1} f\left(\frac{\theta}{2 \pi}-y\right) H_{\tau /\left(4 \pi^{2}\right)}(y) d y \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\frac{\theta}{2 \pi}-\frac{\xi}{2 \pi}\right) H_{\tau /\left(4 \pi^{2}\right)}\left(\frac{\xi}{2 \pi}\right) d \xi=\frac{1}{2 \pi} \int_{0}^{2 \pi} F(\theta-\xi) h_{\tau}(\xi) d \xi:=F \star h_{\tau}
\end{aligned}
$$
\]

where " \star " is defined by

$$
(G \star H)(\theta):=\frac{1}{2 \pi} \int_{0}^{2 \pi} G(\theta-\xi) H(\xi) d \xi
$$

for any 2π-periodic Riemann integrable functions G, H.
(iii) By the definition of U and u, we have $U(\theta, 0)=u\left(\frac{\theta}{2 \pi}, 0\right)=f\left(\frac{\theta}{2 \pi}\right)=F(\theta)$. Since

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}|U(\theta, \tau)-F(\theta)|^{2} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|u\left(\frac{\theta}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right)-f\left(\frac{\theta}{2 \pi}\right)\right|^{2} d \theta=\int_{0}^{1}\left|u\left(x, \frac{\tau}{4 \pi^{2}}\right)-f(x)\right|^{2} d x
$$

by (c) we have

$$
\lim _{\tau \downarrow 0} \frac{1}{2 \pi} \int_{0}^{2 \pi}|U(\theta, \tau)-F(\theta)|^{2} d \theta=0
$$

Similarly, whenever $x_{0} \in[0,1]$ satisfies $\lim _{t \downarrow 0} u\left(x_{0}, t\right)=f\left(x_{0}\right)$, letting $\theta_{0}:=2 \pi x_{0}$ we have

$$
\lim _{\tau \downarrow 0} U\left(\theta_{0}, \tau\right)=\lim _{\tau \downarrow 0} u\left(\frac{\theta_{0}}{2 \pi}, \frac{\tau}{4 \pi^{2}}\right)=f\left(\frac{\theta_{0}}{2 \pi}\right)=F\left(\theta_{0}\right) .
$$

Done.
Ch5, Ex1. (6 marks) (It seems that you already have good solution from tutorial??)
We remark that when doing part (c), in order to use the result of part (b), we have to check that $F(y):=\widehat{f}(y) e^{2 i \pi y x}$ is continuous and of moderate decrease. To show F is continuous, we want to show that \widehat{f} is continuous. It may be done by using that f is continuous with compact support $[-M, M]$. Here is another approach: by hypothesis, \widehat{f} is of moderate decrease. Therefore, by the exact definition of "moderate decrease" in the textbook, \widehat{f} is continuous ${ }^{⿴ 囗}$.

[^1]
[^0]: *I find this question quite ambiguous and I may misunderstand it.

[^1]: ${ }^{\dagger}$ This idea is suggested by a student. Sorry that I previously misunderstood that the "moderate decrease" condition was about magnitude only and not about smoothness. If I marked your work wrongly, please feel free to contact me.

