
TA’s solution to 3093 assignment 6

Ch4, Ex4. (4 marks)1

Before we start, let’s consider an example:
Let γ : [0, 2π] → R2 be defined by

γ(t) =

 (cos 2t, sin 2t) if t ∈ [0, π)

(2− cos 2t, sin 2t) if t ∈ [π, 2π].

This curve Γ looks like the “∞” symbol. As

γ′(t) =

 (−2 sin 2t, 2 cos 2t) if t ∈ [0, π)

(2 sin 2t, 2 cos 2t) if t ∈ (π, 2π],

and

lim
h→0+

γ1(π + h)− γ1(π)

h
= lim

h→0+

2− cos(2π + 2h)− 1

h
= 0 (by L’Hospital’s Rule)

= lim
h→0−

cos(2π + 2h)− 1

h
= lim

h→0−

γ1(π + h)− γ1(π)

h
,

we see that γ ∈ C1, and |γ′(t)| ̸= 0 for all t ∈ [0, 2π]. Note that∫ 2π

0

(γ1γ
′
2 − γ2γ

′
1) =

∫ π

0

(2 cos2 2t+ 2 sin2 2t)dt+

∫ 2π

π

(4 cos 2t− 2 cos2 2t− 2 sin2 2t)dt

=

∫ 2π

π

(4 cos 2t)dt = 0.

To have an understanding of the isoperimetric inequality when the curve is not simple, please
refer to the following excerpts2:

1The material and idea presented here are from the 2007-08 MAT3090 class by Prof. Chou Kai Seng (and his TA?).
2They are from lecture notes 8 of the class mentioned in the first footnote.
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Let’s come back to the question now. We shall show the equivalence of the following two state-
ments:
(S1) Given any γ : [a, b] → R2, where γ ∈ C1, |γ′(t)| ̸= 0 on [a, b], and γ(a) = γ(b), writing
γ(t) = (x(t), y(t)) we have

αγ ≤
β2
γ

4π
,

where
αγ :=

∣∣∣∣∫ b

a

x′y

∣∣∣∣ and βγ :=

∫ b

a

√
(x′)2 + (y′)2.
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(S2) Given any 2π-periodic function f ∈ C1 with
∫ 2π

0
f = 0, we have∫ 2π

0

|f |2 ≤
∫ 2π

0

|f ′|2 .

(S1)⇒(S2):
Since |f |2 = ℜ(f)2 +ℑ(f)2 and |f ′|2 = (ℜ(f)′)2 + (ℑ(f)′)2, we can assume that f is a real-valued
function rather than a probably complex-valued function. If f ′ ≡ 0 on [0, 2π], then f is a constant
function. By

∫ 2π

0
f = 0, we see that f ≡ 0 as well, so the desired inequality holds plainly.

Therefore, we can assume that f ′ is not the zero function on [0, 2π].
Given ε > 0, for all large N ∈ N we have ∥f − SN(f)∥2 ≤ ε and ∥f ′ − SN(f

′)∥2 ≤ ε.3 Note that
SN(f

′)(θ) =
d

dθ
SN(f)(θ)

4. Since f is real-valued, we have f̂(−n) = f̂(n), whence both SN(f) and
SN(f

′) are real-valued functions. Notice also that since f ′ is not the zero function, SN(f) and
SN(f

′) are not the zero trigonometric polynomial for all large N5.
Fix a large N satisfying the aforementioned requirements. By the substitution x = eiθ and the
fundamental theorem of algebra, we see that the equation SN(f

′)(θ) = 0 can only have finitely
many solutions for θ ∈ [0, 2π]. This implies the equation SN(f)

2(θ) + SN(f
′)2(θ) = 0 can only

have finitely many solutions for θ ∈ [0, 2π].
Here we make an assumption: there exists a 2π-periodic real-valued function σ satisfying the
following properties:

• σ ∈ C∞. i.e. σ is infinitely differentiable.
•
∫ 2π

0
σ = 0.

• ∥σ∥2 < ε and ∥σ′∥2 < ε.
• (SN(f) + σ)2 + (SN(f

′) + σ′)2 > 0 on [0, 2π].

We shall justify this assumption later.
Under this assumption, writing SN,σ := SN(f) + σ, we consider γ : [0, 2π] → R2 defined by

γ(t) :=

(
−
∫ t

0

SN,σ(θ)dθ, SN,σ(t)

)
.

We have γ ∈ C1, and |γ′(t)|2 ̸= 0. Since
∫ 2π

0
f = 0, the constant coefficient of SN(f) is zero,

whence γ(0) = γ(2π) = (0, SN,σ(0)). We are allowed to use (S1) now.
We get ∣∣∣∣∫ 2π

0

(SN,σ)
2(θ)dθ

∣∣∣∣ ≤ 1

4π

(∫ 2π

0

√
(SN,σ)2(θ) + (S ′

N,σ)
2(θ)dθ

)2

.

It follows that∫ 2π

0

(SN,σ)
2(θ)dθ ≤ 1

4π

(∫ 2π

0

((SN,σ)
2 + (S ′

N,σ)
2)

)(∫ 2π

0

1

)
(Cauchy-Schwarz inequality)

=
1

2

(∫ 2π

0

(SN,σ)
2(θ)dθ +

∫ 2π

0

(S ′
N,σ)

2(θ)dθ

)
.

3This is by textbook Ch3 Theorem 1.1.
4E.g. by textbook Ch2 p.43
5This is by textbook Ch2 Corollary 2.2.
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Hence ∥SN(f) + σ∥2 = ∥SN,σ∥2 ≤
∥∥S ′

N,σ

∥∥
2
= ∥SN(f

′) + σ′∥2. Consequently,

∥f∥2 ≤ ∥f − SN(f)∥2 + ∥SN(f)∥2 ≤ ε+ ∥SN(f)∥2
≤ ε+ ∥SN(f) + σ∥2 + ∥σ∥2
≤ ε+ ∥SN(f

′) + σ′∥2 + ∥σ∥2
≤ ε+ ∥SN(f

′)− f ′∥2 + ∥f ′∥2 + ∥σ′∥2 + ∥σ∥2
≤ 4ε+ ∥f ′∥2 .

Since ε > 0 can be arbitrarily small, the result follows.
It remains to justify such σ exists. Since we have already done so much, let’s try to do it casually.
The idea is to perturb the function SN(f) a little bit6 at each small neighborhood of θ0 when
SN(f)

2(θ0) + SN(f
′)2(θ0) = 0. We may only need to consider two situations:

Suppose we have an infinitely differentiable “bump function” which vanishes outside a bounded
interval and looks like the following:

Then we can make copies of it and combine them through translations and scalar multiplications.
Therefore, in the first situation, we may use the following σ1:

6This is the words from the suggested solutions to exercise 8 of the class mentioned in the first footnote.
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Then near θ0, SN(f) + σ1 may be like:

so that (SN(f) + σ1)(θ) > 0 near θ0.
In the second situation, we may use the following σ2:
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Near θ0, SN(f) + σ2 may be like:

so that when (SN(f) + σ2)(θ1) = 0, we have (SN(f
′) + σ′

2)(θ1) > 0.
The existence of such bump functions may be guaranteed by considering the following function:
given δ > 0, define

gδ(x) :=

 e
− 1

δ2−(x−θ0)
2 if |x− θ0| < δ

0 otherwise.7

(S2)⇒(S1):
Define h : [a, b] → [0, βγ] by h(s) :=

∫ s

a
|γ′(t)| dt. Since |γ′| ̸= 0, we can follow the idea of Ch4 Ex1

and consider ρ : [0, βγ] → R2 defined by ρ = γ ◦ h−1. Writing ρ(s) = (u(s), v(s)), it satisfies

(u′)2 + (v′)2 ≡ 1, and
∣∣∣∣∫ βγ

0

u′(s)v(s)ds

∣∣∣∣ = ∣∣∣∣∫ b

a

x′(t)y(t)dt

∣∣∣∣ (by the substitution s = h(t)).

As |γ′| ̸= 0, we have βγ > 0. Define

J :=

 1 if
∫ βγ

0
u′(s)v(s)ds ≥ 0

−1 otherwise,

V (s) := v(s)− 1

βγ

∫ βγ

0

v(ξ)dξ,

and
c :=

2π

βγ

.

7C.f. this stackexchange post and textbook Ch5 Ex4.
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Noting that (u′)2 + (V ′)2 ≡ 1 and J2 = 1, we have

β2
γ

4π
=

βγ

4π

∫ βγ

0

((u′)2 + (V ′)2) =
βγ

4π

∫ βγ

0

[
(u′ − JcV )2 + ((V ′)2 − c2V 2) + 2Jcu′V

]
≥ βγ

4π

∫ βγ

0

[
(V ′)2 − c2V 2

]
+

βγ2c

4π
·
(
J

∫ βγ

0

u′V

)
=

βγ

4π

∫ βγ

0

[
(V ′)2 − c2V 2

]
+ J

∫ βγ

0

u′V.

Since x(b) = x(a), we have
∫ βγ

0
u′A = A(u(βγ)− u(0)) = 0 for any constant A. Therefore,

J

∫ βγ

0

u′V =

∣∣∣∣∫ βγ

0

u′v

∣∣∣∣ = ∣∣∣∣∫ b

a

x′(t)y(t)dt

∣∣∣∣ .
It remains to show that ∫ βγ

0

[
(V ′)2 − c2V 2

]
≥ 0.

Define f : [0, 2π] → R by
f(θ) := V (

βγ

2π
θ).

Then ∫ 2π

0

(f)2 =

∫ 2π

0

(
V (

βγ

2π
θ)

)2

dθ =

(
2π

βγ

)∫ βγ

0

(V (ξ))2 dξ =

∫ βγ

0

cV 2,

and ∫ 2π

0

(f ′)2 =

(
βγ

2π

)2 ∫ 2π

0

(
V ′(

βγ

2π
θ)

)2

dθ =

(
βγ

2π

)∫ βγ

0

(V ′(ξ))
2
dξ =

1

c

∫ βγ

0

(V ′)
2
.

Since f(0) = f(2π), we can extend f to be a 2π-periodic function. We have f ∈ C1 and∫ 2π

0

f =
2π

βγ

∫ βγ

0

V (s)ds =
2π

βγ

[∫ βγ

0

v(s)ds−
∫ βγ

0

v(s)ds

]
= 0.

By (S2), we have
∫ 2π

0
f 2 ≤

∫ 2π

0
(f ′)2. Done8.

Ex5. (3 marks) Most students have no problem about this question. A solution may be9

8In view of load management, let’s skip the “equality holds if and only if” part.
9A student provides this solution.
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Let’s make a remark. Suppose θ0 ∈ (1,∞) satisfies the following properties:

• There exist θ1, . . . , θd ∈ C such that θn0 + θn1 + · · ·+ θnd ∈ Z for all n ∈ N;
• |θi| < 1 ∀1 ≤ i ≤ d.

Then by the same argument as above, we see that the fractional part of θn0 is not equidistributed

in [0, 1]. The Pisot numbers, which includes the golden ratio 1 +
√
5

2
, are examples of such θ0.

Ex10. (3 marks)

(a). A solution to this part may be10

10This solution is adapted from a student’s work.
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(b).

Approach 1

Given ε > 0, we have ∥f − Sm(f)∥2 < ε for some large m11. Since
∫ 1

0
f = 0, the constant

term of Sm(f) is zero. Therefore, Sm(f) is a continuous function satisfying
∫ 1

0
Sm(f) = 0.

By the result of part (a), we have

lim
n→∞

1

N

N∑
1

Sm(f)(x+ ξn) = 0 uniformly in x.

Consequently, there exists L s.t. for all N ≥ L, for all x ∈ [0, 1], we have∣∣∣∣∣ 1N
N∑
1

Sm(f)(x+ ξn)

∣∣∣∣∣ < ε,

whence∫ 1

0

∣∣∣∣∣ 1N
N∑
1

f(x+ ξn)

∣∣∣∣∣
2

dx

=

∫ 1

0

∣∣∣∣∣ 1N
N∑
1

[f(x+ ξn)− Sm(f)(x+ ξn)] +
1

N

N∑
1

Sm(f)(x+ ξn)

∣∣∣∣∣
2

12 ≤
∫ 1

0

2

∣∣∣∣∣ 1N
N∑
1

[f(x+ ξn)− Sm(f)(x+ ξn)]

∣∣∣∣∣
2

dx+

∫ 1

0

2

∣∣∣∣∣ 1N
N∑
1

Sm(f)(x+ ξn)

∣∣∣∣∣
2

dx

≤ 2

∥∥∥∥∥ 1

N

N∑
1

[f(x+ ξn)− Sm(f)(x+ ξn)]

∥∥∥∥∥
2

2

+ 2ε2

≤ 2

(
1

N

N∑
1

∥f − Sm(f)∥2

)2

+ 2ε2 ≤ 4ε2.

The result follows.

Approach 213

11This may be the reason why the authors give us a square in this question.
12By |a+ b|2 ≤ (|a|+ |b|)2 ≤ 2 |a|2 + 2 |b|2.
13A student provides this solution.
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A more elementary argument for the highlighted part may be as follows. Fix a ε > 0.
Since

∑∞
−∞

∣∣∣f̂(k)∣∣∣2 < ∞, there exists K s.t.
∑

|k|≥K

∣∣∣f̂(k)∣∣∣2 < ε. Then there exists L s.t.∑
|k|≤K

∣∣∣f̂N(k)∣∣∣2 < ε for all N ≥ L. Consequently, for all N ≥ L we have

∞∑
−∞

∣∣∣f̂N(k)∣∣∣2 = ∑
|k|≤K

∣∣∣f̂N(k)∣∣∣2 + ∑
|k|>K

∣∣∣f̂N(k)∣∣∣2 ≤ ∑
|k|≤K

∣∣∣f̂N(k)∣∣∣2 + ∑
|k|>K

∣∣∣f̂(k)∣∣∣2 ≤ 2ε.

Approach 314

We remark that
• We should also check if h is of period 1 before applying part (a).
• This approach makes no use of the square. The same argument works for any positive

integer power.

14This solution is adapted from the work by former TAs.
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