TA's solution to 3093 assignment 6

Ch4, Ex4. $(4 \text{ marks})^1$

Before we start, let's consider an example:

Let $\gamma: [0, 2\pi] \to \mathbb{R}^2$ be defined by

$$\gamma(t) = \begin{cases} (\cos 2t, \sin 2t) & \text{if } t \in [0, \pi) \\ (2 - \cos 2t, \sin 2t) & \text{if } t \in [\pi, 2\pi]. \end{cases}$$

This curve Γ looks like the " ∞ " symbol. As

$$\gamma'(t) = \begin{cases} (-2\sin 2t, 2\cos 2t) & \text{if } t \in [0,\pi) \\ (2\sin 2t, 2\cos 2t) & \text{if } t \in (\pi, 2\pi], \end{cases}$$

and

$$\lim_{h \to 0^+} \frac{\gamma_1(\pi+h) - \gamma_1(\pi)}{h} = \lim_{h \to 0^+} \frac{2 - \cos(2\pi + 2h) - 1}{h} = 0 \quad \text{(by L'Hospital's Rule)}$$
$$= \lim_{h \to 0^-} \frac{\cos(2\pi + 2h) - 1}{h} = \lim_{h \to 0^-} \frac{\gamma_1(\pi+h) - \gamma_1(\pi)}{h},$$

we see that $\gamma \in \mathcal{C}^1$, and $|\gamma'(t)| \neq 0$ for all $t \in [0, 2\pi]$. Note that

$$\int_{0}^{2\pi} (\gamma_1 \gamma_2' - \gamma_2 \gamma_1') = \int_{0}^{\pi} (2\cos^2 2t + 2\sin^2 2t) dt + \int_{\pi}^{2\pi} (4\cos 2t - 2\cos^2 2t - 2\sin^2 2t) dt$$
$$= \int_{\pi}^{2\pi} (4\cos 2t) dt = 0.$$

To have an understanding of the isoperimetric inequality when the curve is not simple, please refer to the following excerpts²:

the isoperimetric problem is : Among all closed, simple curves with bixed length
$$2\pi$$
, only the unit cicle. has the maximal area π .

¹The material and idea presented here are from the 2007-08 MAT3090 class by Prof. Chou Kai Seng (and his TA?). ²They are from lecture notes 8 of the class mentioned in the first footnote.

We observe the above proof does not use the fact that I is simple. This condition is used to make sure that the area A has a geometric meaning. Hence, for any 2 mi positive direction we define $A = \frac{1}{2} \int (x \, dy - y \, dx)$ the isoperimetric problem is correct. It is interesting to assign a meaning to this Entegral when the curve has self-intersection. The answer turns out depending on the notion of the winding number. I divides R' into Cinited mary disjoint domains D, Pz, --, PN when DN is usually assigned for the outer unlided domain. For each D; we can assigned it with an integer ng E Z called the winding number of the domain. $n_1 = Q$ $n_2 = 1$ $n_3 = 0$ $n_1 = 1$ $n_2 = -1$ $M_3 = O$

the endored (geometric) then one can show that area of Dp. $\frac{1}{2}\int(x\,dy-y\,dx)=\sum_{k}^{N}n_{k}|D_{k}|,$ - in positive or negative direction . this integral is letter interpreted as the signed area. A stronger

notion of ansa is the weighted area.

$$A_{W} = \sum_{i}^{N} |\eta_{R}| |D_{R}|.$$
By the homogenity of the Euclidean space, the isoperimetric
inequality problem is equivalent to the isoperimetric visquality:

$$L^{2} \gg 4\pi A$$
for any C'- curve when L and A are defined in (1) and
(2) Y (Exercise)

$$= holds (=) \forall is a cricle.$$
The Rado inquality (1935) gives a better result

$$L^{2} \gg 4\pi A_{W}.$$
More, the Banchoff - Pohl (1971) mixinality assert

$$L^{2} \gg 4\pi \sum_{k=1}^{N} \eta_{k}^{2} |D_{R}| I$$

Let's come back to the question now. We shall show the equivalence of the following two statements:

.

(S1) Given any $\gamma : [a, b] \to \mathbb{R}^2$, where $\gamma \in \mathcal{C}^1$, $|\gamma'(t)| \neq 0$ on [a, b], and $\gamma(a) = \gamma(b)$, writing $\gamma(t) = (x(t), y(t))$ we have 52

$$\alpha_{\gamma} \le \frac{\beta_{\gamma}^2}{4\pi},$$

where

$$\alpha_{\gamma} := \left| \int_{a}^{b} x' y \right|$$
 and $\beta_{\gamma} := \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2}}.$

(S2) Given any 2π -periodic function $f \in \mathcal{C}^1$ with $\int_0^{2\pi} f = 0$, we have

$$\int_0^{2\pi} |f|^2 \le \int_0^{2\pi} |f'|^2 \, .$$

$(S1) \Rightarrow (S2)$:

Since $|f|^2 = \Re(f)^2 + \Im(f)^2$ and $|f'|^2 = (\Re(f)')^2 + (\Im(f)')^2$, we can assume that f is a real-valued function rather than a probably complex-valued function. If $f' \equiv 0$ on $[0, 2\pi]$, then f is a constant function. By $\int_0^{2\pi} f = 0$, we see that $f \equiv 0$ as well, so the desired inequality holds plainly. Therefore, we can assume that f' is not the zero function on $[0, 2\pi]$.

Given $\varepsilon > 0$, for all large $N \in \mathbb{N}$ we have $||f - S_N(f)||_2 \le \varepsilon$ and $||f' - S_N(f')||_2 \le \varepsilon$.³ Note that $S_N(f')(\theta) = \frac{d}{d\theta}S_N(f)(\theta)^4$. Since f is real-valued, we have $\widehat{f}(-n) = \overline{\widehat{f}(n)}$, whence both $S_N(f)$ and $S_N(f')$ are real-valued functions. Notice also that since f' is not the zero function, $S_N(f)$ and $S_N(f')$ are not the zero trigonometric polynomial for all large N^5 .

Fix a large N satisfying the aforementioned requirements. By the substitution $x = e^{i\theta}$ and the fundamental theorem of algebra, we see that the equation $S_N(f')(\theta) = 0$ can only have finitely many solutions for $\theta \in [0, 2\pi]$. This implies the equation $S_N(f)^2(\theta) + S_N(f')^2(\theta) = 0$ can only have finitely many solutions for $\theta \in [0, 2\pi]$.

Here we make an assumption: there exists a 2π -periodic real-valued function σ satisfying the following properties:

- $\sigma \in \mathcal{C}^{\infty}$. i.e. σ is infinitely differentiable.
- $\int_0^{2\pi} \sigma = 0.$

•
$$\|\sigma\|_2 < \varepsilon$$
 and $\|\sigma'\|_2 < \varepsilon$.

•
$$(S_N(f) + \sigma)^2 + (S_N(f') + \sigma')^2 > 0$$
 on $[0, 2\pi]$.

We shall justify this assumption later.

Under this assumption, writing $S_{N,\sigma} := S_N(f) + \sigma$, we consider $\gamma : [0, 2\pi] \to \mathbb{R}^2$ defined by

$$\gamma(t) := \left(-\int_0^t S_{N,\sigma}(\theta) d\theta, \quad S_{N,\sigma}(t) \right)$$

We have $\gamma \in \mathcal{C}^1$, and $|\gamma'(t)|^2 \neq 0$. Since $\int_0^{2\pi} f = 0$, the constant coefficient of $S_N(f)$ is zero, whence $\gamma(0) = \gamma(2\pi) = (0, S_{N,\sigma}(0))$. We are allowed to use (S1) now.

We get

$$\left| \int_{0}^{2\pi} (S_{N,\sigma})^{2}(\theta) d\theta \right| \leq \frac{1}{4\pi} \left(\int_{0}^{2\pi} \sqrt{(S_{N,\sigma})^{2}(\theta) + (S_{N,\sigma}')^{2}(\theta)} d\theta \right)^{2}$$

It follows that

$$\int_0^{2\pi} (S_{N,\sigma})^2(\theta) d\theta \le \frac{1}{4\pi} \left(\int_0^{2\pi} ((S_{N,\sigma})^2 + (S'_{N,\sigma})^2) \right) \left(\int_0^{2\pi} 1 \right) \quad \text{(Cauchy-Schwarz inequality)}$$
$$= \frac{1}{2} \left(\int_0^{2\pi} (S_{N,\sigma})^2(\theta) d\theta + \int_0^{2\pi} (S'_{N,\sigma})^2(\theta) d\theta \right).$$

³This is by textbook Ch3 Theorem 1.1.

⁴E.g. by textbook Ch2 p.43

⁵This is by textbook Ch2 Corollary 2.2.

Hence $||S_N(f) + \sigma||_2 = ||S_{N,\sigma}||_2 \le ||S'_{N,\sigma}||_2 = ||S_N(f') + \sigma'||_2$. Consequently,

$$\|f\|_{2} \leq \|f - S_{N}(f)\|_{2} + \|S_{N}(f)\|_{2} \leq \varepsilon + \|S_{N}(f)\|_{2}$$

$$\leq \varepsilon + \|S_{N}(f) + \sigma\|_{2} + \|\sigma\|_{2}$$

$$\leq \varepsilon + \|S_{N}(f') + \sigma'\|_{2} + \|\sigma\|_{2}$$

$$\leq \varepsilon + \|S_{N}(f') - f'\|_{2} + \|f'\|_{2} + \|\sigma'\|_{2} + \|\sigma\|_{2}$$

$$\leq 4\varepsilon + \|f'\|_{2}.$$

Since $\varepsilon > 0$ can be arbitrarily small, the result follows.

It remains to justify such σ exists. Since we have already done so much, let's try to do it casually. The idea is to *perturb the function* $S_N(f)$ *a little bit*⁶ at each small neighborhood of θ_0 when $S_N(f)^2(\theta_0) + S_N(f')^2(\theta_0) = 0$. We may only need to consider two situations:

Suppose we have an infinitely differentiable "bump function" which vanishes outside a bounded interval and looks like the following:

Then we can make copies of it and combine them through translations and scalar multiplications. Therefore, in the first situation, we may use the following σ_1 :

⁶This is the words from the suggested solutions to exercise 8 of the class mentioned in the first footnote.

Then near θ_0 , $S_N(f) + \sigma_1$ may be like:

so that $(S_N(f) + \sigma_1)(\theta) > 0$ near θ_0 .

In the second situation, we may use the following σ_2 :

Near θ_0 , $S_N(f) + \sigma_2$ may be like:

so that when $(S_N(f) + \sigma_2)(\theta_1) = 0$, we have $(S_N(f') + \sigma'_2)(\theta_1) > 0$.

The existence of such bump functions may be guaranteed by considering the following function: given $\delta > 0$, define

$$g_{\delta}(x) := \begin{cases} e^{-\frac{1}{\delta^2 - (x-\theta_0)^2}} & \text{if } |x-\theta_0| < \delta \\ 0 & \text{otherwise.}^7 \end{cases}$$

 $(S2) \Rightarrow (S1)$:

Define $h : [a, b] \to [0, \beta_{\gamma}]$ by $h(s) := \int_{a}^{s} |\gamma'(t)| dt$. Since $|\gamma'| \neq 0$, we can follow the idea of Ch4 Ex1 and consider $\rho : [0, \beta_{\gamma}] \to \mathbb{R}^{2}$ defined by $\rho = \gamma \circ h^{-1}$. Writing $\rho(s) = (u(s), v(s))$, it satisfies

$$(u')^2 + (v')^2 \equiv 1$$
, and $\left| \int_0^{\beta_\gamma} u'(s)v(s)ds \right| = \left| \int_a^b x'(t)y(t)dt \right|$ (by the substitution $s = h(t)$).

As $|\gamma'| \neq 0$, we have $\beta_{\gamma} > 0$. Define

$$J := \begin{cases} 1 & \text{if } \int_0^{\beta_\gamma} u'(s)v(s)ds \ge 0\\ -1 & \text{otherwise,} \end{cases}$$

$$V(s) := v(s) - \frac{1}{\beta_{\gamma}} \int_0^{\beta_{\gamma}} v(\xi) d\xi,$$

and

$$c := \frac{2\pi}{\beta_{\gamma}}.$$

 $^{^7\}mathrm{C.f.}$ this stack exchange post and textbook Ch5 Ex4.

Noting that $(u')^2 + (V')^2 \equiv 1$ and $J^2 = 1$, we have

$$\begin{split} \frac{\beta_{\gamma}^2}{4\pi} &= \frac{\beta_{\gamma}}{4\pi} \int_0^{\beta_{\gamma}} ((u')^2 + (V')^2) = \frac{\beta_{\gamma}}{4\pi} \int_0^{\beta_{\gamma}} \left[(u' - JcV)^2 + ((V')^2 - c^2V^2) + 2Jcu'V \right] \\ &\geq \frac{\beta_{\gamma}}{4\pi} \int_0^{\beta_{\gamma}} \left[(V')^2 - c^2V^2 \right] + \frac{\beta_{\gamma}2c}{4\pi} \cdot \left(J \int_0^{\beta_{\gamma}} u'V \right) \\ &= \frac{\beta_{\gamma}}{4\pi} \int_0^{\beta_{\gamma}} \left[(V')^2 - c^2V^2 \right] + J \int_0^{\beta_{\gamma}} u'V. \end{split}$$

Since x(b) = x(a), we have $\int_0^{\beta_\gamma} u' A = A(u(\beta_\gamma) - u(0)) = 0$ for any constant A. Therefore,

$$J\int_0^{\beta_\gamma} u'V = \left|\int_0^{\beta_\gamma} u'v\right| = \left|\int_a^b x'(t)y(t)dt\right|.$$

It remains to show that

$$\int_{0}^{\beta_{\gamma}} \left[(V')^2 - c^2 V^2 \right] \ge 0.$$

Define $f: [0, 2\pi] \to \mathbb{R}$ by

$$f(\theta) := V(\frac{\beta_{\gamma}}{2\pi}\theta).$$

Then

$$\int_0^{2\pi} (f)^2 = \int_0^{2\pi} \left(V(\frac{\beta_\gamma}{2\pi}\theta) \right)^2 d\theta = \left(\frac{2\pi}{\beta_\gamma}\right) \int_0^{\beta_\gamma} \left(V(\xi)\right)^2 d\xi = \int_0^{\beta_\gamma} cV^2,$$

and

$$\int_0^{2\pi} (f')^2 = \left(\frac{\beta_\gamma}{2\pi}\right)^2 \int_0^{2\pi} \left(V'(\frac{\beta_\gamma}{2\pi}\theta)\right)^2 d\theta = \left(\frac{\beta_\gamma}{2\pi}\right) \int_0^{\beta_\gamma} \left(V'(\xi)\right)^2 d\xi = \frac{1}{c} \int_0^{\beta_\gamma} \left(V'\right)^2 d\xi$$

Since $f(0) = f(2\pi)$, we can extend f to be a 2π -periodic function. We have $f \in \mathcal{C}^1$ and

$$\int_0^{2\pi} f = \frac{2\pi}{\beta_\gamma} \int_0^{\beta_\gamma} V(s) ds = \frac{2\pi}{\beta_\gamma} \left[\int_0^{\beta_\gamma} v(s) ds - \int_0^{\beta_\gamma} v(s) ds \right] = 0$$

By (S2), we have $\int_0^{2\pi} f^2 \le \int_0^{2\pi} (f')^2$. Done⁸.

Ex5. (3 marks) Most students have no problem about this question. A solution may be⁹

Let $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Then γ_n is the fractional part of α^n . Now we let $U_n = \alpha^n + \beta^n$, so $U_0 = 2$ and $U_1 = 1$. Now since α and β are the two roots of the quadratic equation $x^2 = x + 1$, for any $r \ge 1$ we must have $U_{r+1} = \alpha^{r+1} + \beta^{r+1} = \alpha^r + \alpha^{r-1} + \beta^r + \beta^{r-1} = U_r + U_{r-1}$. Therefore U_n is an integer for any n. Now we notice that $|\beta| < 1$, so for sufficiently large n, $|\beta^n| < 1/3$. Therefore, since $\alpha^n = U_n - \beta^n$, $\alpha^n \in (U_n - 1/3, U_n + 1/3)$, implying $\gamma_n \notin (1/3, 2/3)$. Hence $\#\{1 \le n \le N : \gamma_n \in (1/3, 2/3)\}$ is a constant for sufficiently large N, so $\lim_{N \to \infty} \frac{\#\{1 \le n \le N : \gamma_n \in (1/3, 2/3)\}}{N} = 0$. Hence $\{\gamma_n\}_{n=1}^{\infty}$ is not equidistributed in [0, 1].

⁸In view of load management, let's skip the "equality holds if and only if" part.

 $^{^{9}\}mathrm{A}$ student provides this solution.

Let's make a remark. Suppose $\theta_0 \in (1, \infty)$ satisfies the following properties:

- There exist $\theta_1, \ldots, \theta_d \in \mathbb{C}$ such that $\theta_0^n + \theta_1^n + \cdots + \theta_d^n \in \mathbb{Z}$ for all $n \in \mathbb{N}$;
- $|\theta_i| < 1 \ \forall 1 \le i \le d.$

Then by the same argument as above, we see that the fractional part of θ_0^n is not equidistributed in [0, 1]. The Pisot numbers, which includes the golden ratio $\frac{1+\sqrt{5}}{2}$, are examples of such θ_0 .

Ex10. (3 marks)

(a). A solution to this part may be^{10}

By Weyl's criterion, for all integers $k \neq 0$ we have $\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} e^{2\pi i k \xi_n} = 0$, so we see $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k(x+\xi_n)} = \lim_{N \to \infty} \frac{e^{2\pi i kx}}{N} \sum_{n=1}^{N} e^{2\pi i k\xi_n} = 0,$ and the limit is uniform to all x. Therefore for any trigonometric polynomial $P(x) = \sum_{k=1}^{N} c_k e^{2\pi i k x}$ with $\int_0^1 P(x)dx = 0$, $c_0 = 0$, we have $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N P(x + \xi_n) = 0$ Now for a fixed continuous f with $\int_0^1 f(x) dx = 0$, for any $\varepsilon > 0$ there exists some trigonometric polynomial P such that $|f(x) - P(x)| < \varepsilon$ for all $x \in [0,1]$. Then we note that $\left| \int_{0}^{1} P(x) dx \right| =$ $\left|\int_{0}^{1} (P(x) - f(x)) dx\right| \leq \int_{0}^{1} |P(x) - f(x)| dx \leq \varepsilon, \text{ so we can let } r = \int_{0}^{1} P(x) dx \text{ and obtain } |r| \leq \varepsilon.$ Denote Q(x) = P(x) - r, so Q(x) is a trigonometric polynomial with $\int_0^1 Q(x) = 0$. So we have $\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^{N}Q(x+\xi_n)=0$, so that for sufficiently large N, $\left|\frac{1}{N}\sum_{i=1}^{N}Q(x+\xi_n)\right|<\varepsilon$. Now $\left|\frac{1}{N}\sum_{i=1}^{N}f(x+\xi_{n})\right|$ $\leq \left| \frac{1}{N} \sum_{i=1}^{N} \left(f(x+\xi_n) - P(x+\xi_n) \right) \right| + \left| \frac{1}{N} \sum_{i=1}^{N} \left(P(x+\xi_n) - Q(x+\xi_n) \right) \right| + \left| \frac{1}{N} \sum_{i=1}^{N} Q(x+\xi_n) \right|$ $<\frac{1}{N}\sum_{n=1}^{N}|f(x+\xi_{n})-P(x+\xi_{n})|+\frac{1}{N}\sum_{n=1}^{N}|r|+\varepsilon$ $\leq \frac{N\varepsilon}{N} + \frac{N|r|}{N} + \varepsilon \leq 3\varepsilon.$ Therefore we must have $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} f(x+\xi_n) = 0$ as desired.

¹⁰This solution is adapted from a student's work.

Approach 1

Given $\varepsilon > 0$, we have $||f - S_m(f)||_2 < \varepsilon$ for some large m^{11} . Since $\int_0^1 f = 0$, the constant term of $S_m(f)$ is zero. Therefore, $S_m(f)$ is a continuous function satisfying $\int_0^1 S_m(f) = 0$. By the result of part (a), we have

$$\lim_{n \to \infty} \frac{1}{N} \sum_{1}^{N} S_m(f)(x + \xi_n) = 0 \quad \text{uniformly in } x.$$

Consequently, there exists L s.t. for all $N \ge L$, for all $x \in [0, 1]$, we have

$$\left|\frac{1}{N}\sum_{1}^{N}S_{m}(f)(x+\xi_{n})\right|<\varepsilon,$$

whence

$$\begin{split} &\int_{0}^{1} \left| \frac{1}{N} \sum_{1}^{N} f(x+\xi_{n}) \right|^{2} dx \\ &= \int_{0}^{1} \left| \frac{1}{N} \sum_{1}^{N} \left[f(x+\xi_{n}) - S_{m}(f)(x+\xi_{n}) \right] + \frac{1}{N} \sum_{1}^{N} S_{m}(f)(x+\xi_{n}) \right|^{2} \\ ^{12} &\leq \int_{0}^{1} 2 \left| \frac{1}{N} \sum_{1}^{N} \left[f(x+\xi_{n}) - S_{m}(f)(x+\xi_{n}) \right] \right|^{2} dx + \int_{0}^{1} 2 \left| \frac{1}{N} \sum_{1}^{N} S_{m}(f)(x+\xi_{n}) \right|^{2} dx \\ &\leq 2 \left\| \frac{1}{N} \sum_{1}^{N} \left[f(x+\xi_{n}) - S_{m}(f)(x+\xi_{n}) \right] \right\|_{2}^{2} + 2\varepsilon^{2} \\ &\leq 2 \left(\frac{1}{N} \sum_{1}^{N} \left\| f - S_{m}(f) \right\|_{2} \right)^{2} + 2\varepsilon^{2} \leq 4\varepsilon^{2}. \end{split}$$

The result follows.

Approach 2^{13}

Suppose f is integrable and $\int_{0}^{1} f dx = 0$. Let $g_{n}(x) = f(x+\xi_{n})$. Then $\hat{g}_{n}(k) = \int_{0}^{1} g_{n}(x)e^{-2\pi ikx}dx = e^{2\pi ik\xi_{n}} \int_{0}^{1} f(x+\xi_{n})e^{-2\pi ik(x+\xi_{n})}dx = e^{2\pi ik\xi_{n}} \hat{f}(k)$ for $k \neq 0$, $\hat{g}_{n}(0) = \int_{0}^{1} f(x+\xi_{n})dx = \int_{0}^{1} f dx = 0$. Let $f_{N}(x) = \frac{1}{N} \sum_{n=1}^{N} f(x+\xi_{n}) = \frac{1}{N} \sum_{n=1}^{N} g_{n}(x)$. Then $\hat{f}_{N}(0) = \frac{1}{N} \sum_{n=1}^{N} \hat{g}_{n}(0) = 0$, $\forall k \neq 0, \hat{f}_{N}(k) = \frac{1}{N} \sum_{n=1}^{N} \hat{g}_{n}(k) = \hat{f}(k) \frac{1}{N} \sum_{n=1}^{N} e^{2\pi ik\xi_{n}} \xrightarrow{N \to \infty} 0$. Also, $|\hat{f}_{N}(k)| = |\hat{f}(k)| \cdot \frac{1}{N} |\sum_{n=1}^{N} e^{2\pi ik\xi_{n}}| \leq |\hat{f}(k)|$. Since f is Riemann integrable, f^{2} is also Riemann integrable, and so $\infty > \int_{0}^{1} |f|^{2}dx = \sum_{k} |\hat{f}(k)|^{2} \geq \sum_{k} |\hat{f}_{N}(k)|^{2}$. So by dominated convergence theorem, $\lim_{N} \int_{0}^{1} |\frac{1}{N} \sum_{n=1}^{N} f(x+\xi_{n})|^{2} dx = \lim_{N} \int_{0}^{1} |f_{N}|^{2} dx = \lim_{N} \sum_{k} |\hat{f}_{N}(k)|^{2} \equiv \sum_{k} \lim_{N} |\hat{f}_{N}(k)|^{2} = 0$.

¹¹This may be the reason why the authors give us a square in this question.

¹²By $|a+b|^2 \le (|a|+|b|)^2 \le 2|a|^2 + 2|b|^2$.

 $^{^{13}\}mathrm{A}$ student provides this solution.

A more elementary argument for the highlighted part may be as follows. Fix a $\varepsilon > 0$. Since $\sum_{-\infty}^{\infty} \left| \widehat{f}(k) \right|^2 < \infty$, there exists K s.t. $\sum_{|k| \ge K} \left| \widehat{f}(k) \right|^2 < \varepsilon$. Then there exists L s.t. $\sum_{|k| \le K} \left| \widehat{f_N}(k) \right|^2 < \varepsilon$ for all $N \ge L$. Consequently, for all $N \ge L$ we have

$$\sum_{-\infty}^{\infty} \left|\widehat{f_N}(k)\right|^2 = \sum_{|k| \le K} \left|\widehat{f_N}(k)\right|^2 + \sum_{|k| > K} \left|\widehat{f_N}(k)\right|^2 \le \sum_{|k| \le K} \left|\widehat{f_N}(k)\right|^2 + \sum_{|k| > K} \left|\widehat{f}(k)\right|^2 \le 2\varepsilon$$

$$Approach \ 3^{14}$$

Ex 10(b). For any $\epsilon > 0$ and any Riemann integrable functions f, by Lemma 3.2 in Chapter 2 of the book, there exists a continuous function g such that

$$\sup_{x \in [0,1]} |g(x)| \le \sup_{x \in [0,1]} |f(x)| \text{ and } \int_0^1 |f(x) - g(x)| dx < \epsilon.$$

Define $h(x) = g(x) - \int g(x) dx$. Then h satisfies condition in (a), so that $\frac{1}{N} \sum_{n=1}^{N} h(x + \xi_n) \to 0$ uniformly in x. Hence, this means that for N large

$$\frac{1}{N}\sum_{n=1}^{N}g(x+\xi_n) - \int_0^1 g(x)dx < \epsilon \text{ uniformly in } x.$$

Let $M = \sup_{x \in [0,1]} |f(x)|$, note that $\int f(x) dx = 0$, we have

$$\begin{split} \int_{0}^{1} \left| \frac{1}{N} \sum_{n=1}^{N} f(x+\xi_{n}) \right|^{2} dx &\leq M \int_{0}^{1} \left| \frac{1}{N} \sum_{n=1}^{N} f(x+\xi_{n}) \right| dx \\ &\leq M \int_{0}^{1} \left| \frac{1}{N} \sum_{n=1}^{N} (f(x+\xi_{n}) - g(x+\xi_{n})) \right| dx \\ &+ M \int_{0}^{1} \left| \frac{1}{N} \sum_{n=1}^{N} g(x+\xi_{n}) - \int_{0}^{1} g(x) dx \right| dx \\ &+ M \int_{0}^{1} \left| \int_{0}^{1} g(x) dx - \int_{0}^{1} f(x) dx \right| dx \\ &+ M \int_{0}^{1} \left| \int_{0}^{1} g(x) dx - \int_{0}^{1} f(x) dx \right| dx \\ &< M \int_{0}^{1} |f(x) - g(x)| dx + 2M\epsilon \\ &< 3M\epsilon. \end{split}$$

This establishes the result.

We remark that

- We should also check if h is of period 1 before applying part (a).
- This approach makes no use of the square. The same argument works for any positive integer power.

¹⁴This solution is adapted from the work by former TAs.