Ch, Ex. (4 marks)
Before we start, let's consider an example:
Let $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be defined by

$$
\gamma(t)=\left\{\begin{array}{l}
(\cos 2 t, \sin 2 t) \text { if } t \in[0, \pi) \\
(2-\cos 2 t, \sin 2 t) \text { if } t \in[\pi, 2 \pi]
\end{array}\right.
$$

This curve Γ looks like the " ∞ " symbol. As

$$
\gamma^{\prime}(t)=\left\{\begin{array}{l}
(-2 \sin 2 t, 2 \cos 2 t) \text { if } t \in[0, \pi) \\
(2 \sin 2 t, 2 \cos 2 t) \text { if } t \in(\pi, 2 \pi]
\end{array}\right.
$$

and

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{+}} \frac{\gamma_{1}(\pi+h)-\gamma_{1}(\pi)}{h}=\lim _{h \rightarrow 0^{+}} \frac{2-\cos (2 \pi+2 h)-1}{h}=0 \quad \text { (by L'Hospital's Rule) } \\
= & \lim _{h \rightarrow 0^{-}} \frac{\cos (2 \pi+2 h)-1}{h}=\lim _{h \rightarrow 0^{-}} \frac{\gamma_{1}(\pi+h)-\gamma_{1}(\pi)}{h},
\end{aligned}
$$

we see that $\gamma \in \mathcal{C}^{1}$, and $\left|\gamma^{\prime}(t)\right| \neq 0$ for all $t \in[0,2 \pi]$. Note that

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left(\gamma_{1} \gamma_{2}^{\prime}-\gamma_{2} \gamma_{1}^{\prime}\right)=\int_{0}^{\pi}\left(2 \cos ^{2} 2 t+2 \sin ^{2} 2 t\right) d t+\int_{\pi}^{2 \pi}\left(4 \cos 2 t-2 \cos ^{2} 2 t-2 \sin ^{2} 2 t\right) d t \\
= & \int_{\pi}^{2 \pi}(4 \cos 2 t) d t=0
\end{aligned}
$$

To have an understanding of the isoperimetric inequality when the curve is not simple, please refer to the following excerpts²:

$$
\begin{aligned}
& \text { The isoperimetric problem is: Among all closed, simple } \\
& \text { curves with fixed length } 2 \pi \text {, owls the unit circle. has } \\
& \text { the maximal area } \pi \text {. }
\end{aligned}
$$

[^0]We observe the above proof does not use the ono fact that γ is simple. This condition is used to make sure that the area A has a geometric meaning. Hence, for any γ in positive direction we define

$$
A=\frac{1}{2} \int_{\gamma}(x d y-y d x)
$$

the isoperimetic problem is correct. It is interesting to assign a meaning to this integral when the curve has self-intersection. The answer turns out depending on the notion of the winding number. γ divides \mathbb{R}^{2} into finitely mary disjoint domains $D_{1}, D_{2}, \ldots, D_{N}$ when D_{N} is usually assigned f_{u} the outer unbid domain. For ead D_{j} we can assignee it with an integer $n_{j} \in \mathbb{Z}$ called the winding number of the domain.

$$
\begin{aligned}
& n_{1}=2 \\
& n_{2}=1 \\
& n_{3}=0
\end{aligned}
$$

$n_{1}=1$
$n_{2}=-1$
$n_{3}=0$
then one can show that
the encored (geometric)

$$
\frac{1}{2} \int_{\gamma}(x d y-y d x)=\sum_{1}^{N} n_{k}\left|D_{k}\right|
$$

this
in positive or negative direction. area \& D_{k}.

- integral is better interpreted as the signed area... A stronger
notion of area is the weighted area

$$
A_{w}=\sum_{k=1}^{N}\left|n_{k}\right|\left|D_{k}\right|
$$

By the homogenity of the Euclidean space, the isoperimetric problem is equivalent to the isoperimetric nifuality:

$$
L^{2} \geqslant 4 \pi A
$$

f_{w} any C^{\prime}-curve where L and A are defined in (1) ard (2) $\begin{aligned} & \text { (Exercise) } \\ & " " h o l d s ~\end{aligned} \gamma \gamma$ is a circle.

The Rado inquality (1935) gives a bette result

$$
L^{2} \geqslant 4 \pi A_{w}
$$

Mon, the Banchoff-Pohl (1971) miriuality assents

$$
L^{2} \geqslant 4 \pi \sum_{k=1}^{N} n_{k}^{2}\left|D_{k}\right|!
$$

Let's come back to the question now. We shall show the equivalence of the following two statements:
(S1) Given any $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$, where $\gamma \in \mathcal{C}^{1},\left|\gamma^{\prime}(t)\right| \neq 0$ on $[a, b]$, and $\gamma(a)=\gamma(b)$, writing $\gamma(t)=(x(t), y(t))$ we have

$$
\alpha_{\gamma} \leq \frac{\beta_{\gamma}^{2}}{4 \pi}
$$

where

$$
\alpha_{\gamma}:=\left|\int_{a}^{b} x^{\prime} y\right| \quad \text { and } \quad \beta_{\gamma}:=\int_{a}^{b} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}
$$

(S2) Given any 2π-periodic function $f \in \mathcal{C}^{1}$ with $\int_{0}^{2 \pi} f=0$, we have

$$
\int_{0}^{2 \pi}|f|^{2} \leq \int_{0}^{2 \pi}\left|f^{\prime}\right|^{2}
$$

$(\mathrm{S} 1) \Rightarrow(\mathrm{S} 2)$:
Since $|f|^{2}=\Re(f)^{2}+\Im(f)^{2}$ and $\left|f^{\prime}\right|^{2}=\left(\Re(f)^{\prime}\right)^{2}+\left(\Im(f)^{\prime}\right)^{2}$, we can assume that f is a real-valued function rather than a probably complex-valued function. If $f^{\prime} \equiv 0$ on $[0,2 \pi]$, then f is a constant function. By $\int_{0}^{2 \pi} f=0$, we see that $f \equiv 0$ as well, so the desired inequality holds plainly. Therefore, we can assume that f^{\prime} is not the zero function on $[0,2 \pi]$.
Given $\varepsilon>0$, for all large $N \in \mathbb{N}$ we have $\left\|f-S_{N}(f)\right\|_{2} \leq \varepsilon$ and $\left\|f^{\prime}-S_{N}\left(f^{\prime}\right)\right\|_{2} \leq \varepsilon$. 3 Note that $S_{N}\left(f^{\prime}\right)(\theta)=\frac{d}{d \theta} S_{N}(f)(\theta)$. Since f is real-valued, we have $\widehat{f}(-n)=\overline{\widehat{f}(n)}$, whence both $S_{N}(f)$ and $S_{N}\left(f^{\prime}\right)$ are real-valued functions. Notice also that since f^{\prime} is not the zero function, $S_{N}(f)$ and $S_{N}\left(f^{\prime}\right)$ are not the zero trigonometric polynomial for all large N^{5}.
Fix a large N satisfying the aforementioned requirements. By the substitution $x=e^{i \theta}$ and the fundamental theorem of algebra, we see that the equation $S_{N}\left(f^{\prime}\right)(\theta)=0$ can only have finitely many solutions for $\theta \in[0,2 \pi]$. This implies the equation $S_{N}(f)^{2}(\theta)+S_{N}\left(f^{\prime}\right)^{2}(\theta)=0$ can only have finitely many solutions for $\theta \in[0,2 \pi]$.
Here we make an assumption: there exists a 2π-periodic real-valued function σ satisfying the following properties:

- $\sigma \in \mathcal{C}^{\infty}$. i.e. σ is infinitely differentiable.
- $\int_{0}^{2 \pi} \sigma=0$.
- $\|\sigma\|_{2}<\varepsilon$ and $\left\|\sigma^{\prime}\right\|_{2}<\varepsilon$.
- $\left(S_{N}(f)+\sigma\right)^{2}+\left(S_{N}\left(f^{\prime}\right)+\sigma^{\prime}\right)^{2}>0$ on $[0,2 \pi]$.

We shall justify this assumption later.
Under this assumption, writing $S_{N, \sigma}:=S_{N}(f)+\sigma$, we consider $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ defined by

$$
\gamma(t):=\left(-\int_{0}^{t} S_{N, \sigma}(\theta) d \theta, \quad S_{N, \sigma}(t)\right)
$$

We have $\gamma \in \mathcal{C}^{1}$, and $\left|\gamma^{\prime}(t)\right|^{2} \neq 0$. Since $\int_{0}^{2 \pi} f=0$, the constant coefficient of $S_{N}(f)$ is zero, whence $\gamma(0)=\gamma(2 \pi)=\left(0, S_{N, \sigma}(0)\right)$. We are allowed to use (S1) now.
We get

$$
\left|\int_{0}^{2 \pi}\left(S_{N, \sigma}\right)^{2}(\theta) d \theta\right| \leq \frac{1}{4 \pi}\left(\int_{0}^{2 \pi} \sqrt{\left(S_{N, \sigma}\right)^{2}(\theta)+\left(S_{N, \sigma}^{\prime}\right)^{2}(\theta)} d \theta\right)^{2}
$$

It follows that

$$
\begin{aligned}
\int_{0}^{2 \pi}\left(S_{N, \sigma}\right)^{2}(\theta) d \theta & \leq \frac{1}{4 \pi}\left(\int_{0}^{2 \pi}\left(\left(S_{N, \sigma}\right)^{2}+\left(S_{N, \sigma}^{\prime}\right)^{2}\right)\right)\left(\int_{0}^{2 \pi} 1\right) \quad \text { (Cauchy-Schwarz inequality) } \\
& =\frac{1}{2}\left(\int_{0}^{2 \pi}\left(S_{N, \sigma}\right)^{2}(\theta) d \theta+\int_{0}^{2 \pi}\left(S_{N, \sigma}^{\prime}\right)^{2}(\theta) d \theta\right)
\end{aligned}
$$

[^1]Hence $\left\|S_{N}(f)+\sigma\right\|_{2}=\left\|S_{N, \sigma}\right\|_{2} \leq\left\|S_{N, \sigma}^{\prime}\right\|_{2}=\left\|S_{N}\left(f^{\prime}\right)+\sigma^{\prime}\right\|_{2}$. Consequently,

$$
\begin{aligned}
\|f\|_{2} & \leq\left\|f-S_{N}(f)\right\|_{2}+\left\|S_{N}(f)\right\|_{2} \leq \varepsilon+\left\|S_{N}(f)\right\|_{2} \\
& \leq \varepsilon+\left\|S_{N}(f)+\sigma\right\|_{2}+\|\sigma\|_{2} \\
& \leq \varepsilon+\left\|S_{N}\left(f^{\prime}\right)+\sigma^{\prime}\right\|_{2}+\|\sigma\|_{2} \\
& \leq \varepsilon+\left\|S_{N}\left(f^{\prime}\right)-f^{\prime}\right\|_{2}+\left\|f^{\prime}\right\|_{2}+\left\|\sigma^{\prime}\right\|_{2}+\|\sigma\|_{2} \\
& \leq 4 \varepsilon+\left\|f^{\prime}\right\|_{2} .
\end{aligned}
$$

Since $\varepsilon>0$ can be arbitrarily small, the result follows.
It remains to justify such σ exists. Since we have already done so much, let's try to do it casually. The idea is to perturb the function $S_{N}(f)$ a little bit ${ }^{6}$ at each small neighborhood of θ_{0} when $S_{N}(f)^{2}\left(\theta_{0}\right)+S_{N}\left(f^{\prime}\right)^{2}\left(\theta_{0}\right)=0$. We may only need to consider two situations:

Suppose we have an infinitely differentiable "bump function" which vanishes outside a bounded interval and looks like the following:

Then we can make copies of it and combine them through translations and scalar multiplications. Therefore, in the first situation, we may use the following σ_{1} :

[^2]

Then near $\theta_{0}, S_{N}(f)+\sigma_{1}$ may be like:

so that $\left(S_{N}(f)+\sigma_{1}\right)(\theta)>0$ near θ_{0}.
In the second situation, we may use the following σ_{2} :

Near $\theta_{0}, S_{N}(f)+\sigma_{2}$ may be like:

so that when $\left(S_{N}(f)+\sigma_{2}\right)\left(\theta_{1}\right)=0$, we have $\left(S_{N}\left(f^{\prime}\right)+\sigma_{2}^{\prime}\right)\left(\theta_{1}\right)>0$.
The existence of such bump functions may be guaranteed by considering the following function: given $\delta>0$, define

$$
g_{\delta}(x):= \begin{cases}e^{-\frac{1}{\delta^{2}-\left(x-\theta_{0}\right)^{2}}} & \text { if }\left|x-\theta_{0}\right|<\delta \\ 0 & \text { otherwise. }\end{cases}
$$

$(\mathrm{S} 2) \Rightarrow(\mathrm{S} 1)$:
Define $h:[a, b] \rightarrow\left[0, \beta_{\gamma}\right]$ by $h(s):=\int_{a}^{s}\left|\gamma^{\prime}(t)\right| d t$. Since $\left|\gamma^{\prime}\right| \neq 0$, we can follow the idea of Ch4 Ex1 and consider $\rho:\left[0, \beta_{\gamma}\right] \rightarrow \mathbb{R}^{2}$ defined by $\rho=\gamma \circ h^{-1}$. Writing $\rho(s)=(u(s), v(s))$, it satisfies

$$
\left(u^{\prime}\right)^{2}+\left(v^{\prime}\right)^{2} \equiv 1, \quad \text { and } \quad\left|\int_{0}^{\beta_{\gamma}} u^{\prime}(s) v(s) d s\right|=\left|\int_{a}^{b} x^{\prime}(t) y(t) d t\right| \quad(\text { by the substitution } s=h(t))
$$

As $\left|\gamma^{\prime}\right| \neq 0$, we have $\beta_{\gamma}>0$. Define

$$
\begin{gathered}
J:= \begin{cases}1 & \text { if } \int_{0}^{\beta_{\gamma}} u^{\prime}(s) v(s) d s \geq 0 \\
-1 & \text { otherwise }\end{cases} \\
V(s):=v(s)-\frac{1}{\beta_{\gamma}} \int_{0}^{\beta_{\gamma}} v(\xi) d \xi
\end{gathered}
$$

and

$$
c:=\frac{2 \pi}{\beta_{\gamma}}
$$

[^3]Noting that $\left(u^{\prime}\right)^{2}+\left(V^{\prime}\right)^{2} \equiv 1$ and $J^{2}=1$, we have

$$
\begin{aligned}
\frac{\beta_{\gamma}^{2}}{4 \pi} & =\frac{\beta_{\gamma}}{4 \pi} \int_{0}^{\beta_{\gamma}}\left(\left(u^{\prime}\right)^{2}+\left(V^{\prime}\right)^{2}\right)=\frac{\beta_{\gamma}}{4 \pi} \int_{0}^{\beta_{\gamma}}\left[\left(u^{\prime}-J c V\right)^{2}+\left(\left(V^{\prime}\right)^{2}-c^{2} V^{2}\right)+2 J c u^{\prime} V\right] \\
& \geq \frac{\beta_{\gamma}}{4 \pi} \int_{0}^{\beta_{\gamma}}\left[\left(V^{\prime}\right)^{2}-c^{2} V^{2}\right]+\frac{\beta_{\gamma} 2 c}{4 \pi} \cdot\left(J \int_{0}^{\beta_{\gamma}} u^{\prime} V\right) \\
& =\frac{\beta_{\gamma}}{4 \pi} \int_{0}^{\beta_{\gamma}}\left[\left(V^{\prime}\right)^{2}-c^{2} V^{2}\right]+J \int_{0}^{\beta_{\gamma}} u^{\prime} V .
\end{aligned}
$$

Since $x(b)=x(a)$, we have $\int_{0}^{\beta_{\gamma}} u^{\prime} A=A\left(u\left(\beta_{\gamma}\right)-u(0)\right)=0$ for any constant A. Therefore,

$$
J \int_{0}^{\beta_{\gamma}} u^{\prime} V=\left|\int_{0}^{\beta_{\gamma}} u^{\prime} v\right|=\left|\int_{a}^{b} x^{\prime}(t) y(t) d t\right|
$$

It remains to show that

$$
\int_{0}^{\beta_{\gamma}}\left[\left(V^{\prime}\right)^{2}-c^{2} V^{2}\right] \geq 0
$$

Define $f:[0,2 \pi] \rightarrow \mathbb{R}$ by

$$
f(\theta):=V\left(\frac{\beta_{\gamma}}{2 \pi} \theta\right)
$$

Then

$$
\int_{0}^{2 \pi}(f)^{2}=\int_{0}^{2 \pi}\left(V\left(\frac{\beta_{\gamma}}{2 \pi} \theta\right)\right)^{2} d \theta=\left(\frac{2 \pi}{\beta_{\gamma}}\right) \int_{0}^{\beta_{\gamma}}(V(\xi))^{2} d \xi=\int_{0}^{\beta_{\gamma}} c V^{2}
$$

and

$$
\int_{0}^{2 \pi}\left(f^{\prime}\right)^{2}=\left(\frac{\beta_{\gamma}}{2 \pi}\right)^{2} \int_{0}^{2 \pi}\left(V^{\prime}\left(\frac{\beta_{\gamma}}{2 \pi} \theta\right)\right)^{2} d \theta=\left(\frac{\beta_{\gamma}}{2 \pi}\right) \int_{0}^{\beta_{\gamma}}\left(V^{\prime}(\xi)\right)^{2} d \xi=\frac{1}{c} \int_{0}^{\beta_{\gamma}}\left(V^{\prime}\right)^{2}
$$

Since $f(0)=f(2 \pi)$, we can extend f to be a 2π-periodic function. We have $f \in \mathcal{C}^{1}$ and

$$
\int_{0}^{2 \pi} f=\frac{2 \pi}{\beta_{\gamma}} \int_{0}^{\beta_{\gamma}} V(s) d s=\frac{2 \pi}{\beta_{\gamma}}\left[\int_{0}^{\beta_{\gamma}} v(s) d s-\int_{0}^{\beta_{\gamma}} v(s) d s\right]=0 .
$$

By (S2), we have $\int_{0}^{2 \pi} f^{2} \leq \int_{0}^{2 \pi}\left(f^{\prime}\right)^{2}$. Done ${ }^{8}$.
Ex5. (3 marks) Most students have no problem about this question. A solution may be ${ }^{9}$
Let $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Then γ_{n} is the fractional part of α^{n}. Now we let $U_{n}=\alpha^{n}+\beta^{n}$, so $U_{0}=2$ and $U_{1}=1$. Now since α and β are the two roots of the quadratic equation $x^{2}=x+1$, for any $r \geq 1$ we must have $U_{r+1}=\alpha^{r+1}+\beta^{r+1}=\alpha^{r}+\alpha^{r-1}+\beta^{r}+\beta^{r-1}=U_{r}+U_{r-1}$. Therefore U_{n} is an integer for any n. Now we notice that $|\beta|<1$, so for sufficiently large n, $\left|\beta^{n}\right|<1 / 3$. Therefore, since $\alpha^{n}=U_{n}-\beta^{n}$, $\alpha^{n} \in\left(U_{n}-1 / 3, U_{n}+1 / 3\right)$, implying $\gamma_{n} \notin(1 / 3,2 / 3)$. Hence $\#\left\{1 \leq n \leq N: \gamma_{n} \in(1 / 3,2 / 3)\right\}$ is a constant for sufficiently large N, so $\lim _{N \rightarrow \infty} \frac{\#\left\{1 \leq n \leq N: \gamma_{n} \in(1 / 3,2 / 3)\right\}}{N}=0$. Hence $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ is not equidistributed in $[0,1]$.

[^4]Let's make a remark. Suppose $\theta_{0} \in(1, \infty)$ satisfies the following properties:

- There exist $\theta_{1}, \ldots, \theta_{d} \in \mathbb{C}$ such that $\theta_{0}^{n}+\theta_{1}^{n}+\cdots+\theta_{d}^{n} \in \mathbb{Z}$ for all $n \in \mathbb{N}$;
- $\left|\theta_{i}\right|<1 \forall 1 \leq i \leq d$.

Then by the same argument as above, we see that the fractional part of θ_{0}^{n} is not equidistributed in $[0,1]$. The Pisot numbers, which includes the golden ratio $\frac{1+\sqrt{5}}{2}$, are examples of such θ_{0}.

Ex10. (3 marks)
(a). A solution to this part may be 10

By Weyl's criterion, for all integers $k \neq 0$ we have $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}}=0$, so we see

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k\left(x+\xi_{n}\right)}=\lim _{N \rightarrow \infty} \frac{e^{2 \pi i k x}}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}}=0
$$

and the limit is uniform to all x. Therefore for any trigonometric polynomial $P(x)=\sum_{k=-K}^{K} c_{k} e^{2 \pi i k x}$ with $\int_{0}^{1} P(x) d x=0, c_{0}=0, \quad$ we have $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P\left(x+\xi_{n}\right)=0$
Now for a fixed continuous f with $\int_{0}^{1} f(x) d x=0$, for any $\varepsilon>0$ there exists some trigonometric polynomial P such that $|f(x)-P(x)|<\varepsilon$ for all $x \in[0,1]$. Then we note that $\left|\int_{0}^{1} P(x) d x\right|=$ $\left|\int_{0}^{1}(P(x)-f(x)) d x\right| \leq \int_{0}^{1}|P(x)-f(x)| d x \leq \varepsilon$, so we can let $r=\int_{0}^{1} P(x) d x$ and obtain $|r| \leq \varepsilon$. Denote $Q(x)=P(x)-r$, so $Q(x)$ is a trigonometric polynomial with $\int_{0}^{1} Q(x)=0$. So we have $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} Q\left(x+\xi_{n}\right)=0$, so that for sufficiently large $N,\left|\frac{1}{N} \sum_{n=1}^{N} Q\left(x+\xi_{n}\right)\right|<\varepsilon$. Now
$\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|$
$\leq\left|\frac{1}{N} \sum_{n=1}^{N}\left(f\left(x+\xi_{n}\right)-P\left(x+\xi_{n}\right)\right)\right|+\left|\frac{1}{N} \sum_{n=1}^{N}\left(P\left(x+\xi_{n}\right)-Q\left(x+\xi_{n}\right)\right)\right|+\left|\frac{1}{N} \sum_{n=1}^{N} Q\left(x+\xi_{n}\right)\right|$
$<\frac{1}{N} \sum_{n=1}^{N}\left|f\left(x+\xi_{n}\right)-P\left(x+\xi_{n}\right)\right|+\frac{1}{N} \sum_{n=1}^{N}|r|+\varepsilon$
$\leq \frac{N \varepsilon}{N}+\frac{N|r|}{N}+\varepsilon \leq 3 \varepsilon$.
Therefore we must have $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)=0$ as desired.

[^5](b).

Approach 1

Given $\varepsilon>0$, we have $\left\|f-S_{m}(f)\right\|_{2}<\varepsilon$ for some large m 11. Since $\int_{0}^{1} f=0$, the constant term of $S_{m}(f)$ is zero. Therefore, $S_{m}(f)$ is a continuous function satisfying $\int_{0}^{1} S_{m}(f)=0$. By the result of part (a), we have

$$
\lim _{n \rightarrow \infty} \frac{1}{N} \sum_{1}^{N} S_{m}(f)\left(x+\xi_{n}\right)=0 \quad \text { uniformly in } x
$$

Consequently, there exists L s.t. for all $N \geq L$, for all $x \in[0,1]$, we have

$$
\left|\frac{1}{N} \sum_{1}^{N} S_{m}(f)\left(x+\xi_{n}\right)\right|<\varepsilon
$$

whence

$$
\begin{aligned}
& \int_{0}^{1}\left|\frac{1}{N} \sum_{1}^{N} f\left(x+\xi_{n}\right)\right|^{2} d x \\
= & \int_{0}^{1}\left|\frac{1}{N} \sum_{1}^{N}\left[f\left(x+\xi_{n}\right)-S_{m}(f)\left(x+\xi_{n}\right)\right]+\frac{1}{N} \sum_{1}^{N} S_{m}(f)\left(x+\xi_{n}\right)\right|^{2} \\
12 \leq & \int_{0}^{1} 2\left|\frac{1}{N} \sum_{1}^{N}\left[f\left(x+\xi_{n}\right)-S_{m}(f)\left(x+\xi_{n}\right)\right]\right|^{2} d x+\int_{0}^{1} 2\left|\frac{1}{N} \sum_{1}^{N} S_{m}(f)\left(x+\xi_{n}\right)\right|^{2} d x \\
\leq & 2\left\|\frac{1}{N} \sum_{1}^{N}\left[f\left(x+\xi_{n}\right)-S_{m}(f)\left(x+\xi_{n}\right)\right]\right\|_{2}^{2}+2 \varepsilon^{2} \\
\leq & 2\left(\frac{1}{N} \sum_{1}^{N}\left\|f-S_{m}(f)\right\|_{2}\right)^{2}+2 \varepsilon^{2} \leq 4 \varepsilon^{2} .
\end{aligned}
$$

The result follows.
Approach g13
Suppose f is integrable and $\int_{0}^{1} f \mathrm{~d} x=0$. Let $g_{n}(x)=f\left(x+\xi_{n}\right)$. Then $\hat{g_{n}}(k)=\int_{0}^{1} g_{n}(x) e^{-2 \pi i k x} \mathrm{~d} x=$ $e^{2 \pi i k \xi_{n}} \int_{0}^{1} f\left(x+\xi_{n}\right) e^{-2 \pi i k\left(x+\xi_{n}\right)} \mathrm{d} x=e^{2 \pi i k \xi_{n}} \hat{f}(k)$ for $k \neq 0, \hat{g_{n}}(0)=\int_{0}^{1} f\left(x+\xi_{n}\right) \mathrm{d} x=$ $\int_{0}^{1} f \mathrm{~d} x=0$.
Let $f_{N}(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)=\frac{1}{N} \sum_{n=1}^{N} g_{n}(x)$. Then $\hat{f_{N}}(0)=\frac{1}{N} \sum_{n=1}^{N} \hat{g_{n}}(0)=0$, $\forall k \neq 0, \hat{f_{N}}(k)=\frac{1}{N} \sum_{n=1}^{N} \hat{g_{n}}(k)=\hat{f}(k) \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}} \xrightarrow{N \rightarrow \infty} 0$. Also, $\left|\hat{f_{N}}(k)\right|=$ $|\hat{f}(k)| \cdot \frac{1}{N}\left|\sum_{n=1}^{N} e^{2 \pi i k \xi_{n}}\right| \leq|\hat{f}(k)|$. Since f is Riemann integrable, f^{2} is also Riemann integrable, and so $\infty>\int_{0}^{1}|f|^{2} \mathrm{~d} x=\sum_{k}|\hat{f}(k)|^{2} \geq \sum_{k}\left|\hat{f_{N}}(k)\right|^{2}$. So by dominated convergence theorem, $\lim _{N} \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|^{2} \mathrm{~d} x=\lim _{N} \int_{0}^{1}\left|f_{N}\right|^{2} \mathrm{~d} x=\lim _{N} \sum_{k}\left|\hat{f_{N}}(k)\right|^{2}=$ $\sum_{k} \lim _{N}\left|\hat{f_{N}}(k)\right|^{2}=0$.

[^6]A more elementary argument for the highlighted part may be as follows. Fix a $\varepsilon>0$. Since $\sum_{-\infty}^{\infty}|\widehat{f}(k)|^{2}<\infty$, there exists K s.t. $\sum_{|k| \geq K}|\widehat{f}(k)|^{2}<\varepsilon$. Then there exists L s.t. $\sum_{|k| \leq K}\left|\widehat{f_{N}}(k)\right|^{2}<\varepsilon$ for all $N \geq L$. Consequently, for all $N \geq L$ we have

$$
\sum_{-\infty}^{\infty}\left|\widehat{f_{N}}(k)\right|^{2}=\sum_{|k| \leq K}\left|\widehat{f_{N}}(k)\right|^{2}+\sum_{|k|>K}\left|\widehat{f_{N}}(k)\right|^{2} \leq \sum_{|k| \leq K}\left|\widehat{f_{N}}(k)\right|^{2}+\sum_{|k|>K}|\widehat{f}(k)|^{2} \leq 2 \varepsilon
$$

Approach 114
Ex 10(b). For any $\epsilon>0$ and any Riemann integrable functions f, by Lemma 3.2 in Chapter 2 of the book, there exists a continuous function g such that

$$
\sup _{x \in[0,1]}|g(x)| \leq \sup _{x \in[0,1]}|f(x)| \text { and } \int_{0}^{1}|f(x)-g(x)| d x<\epsilon
$$

Define $h(x)=g(x)-\int g(x) d x$. Then h satisfies condition in (a), so that $\frac{1}{N} \sum_{n=1}^{N} h(x+$ $\left.\xi_{n}\right) \rightarrow 0$ uniformly in x. Hence, this means that for N large

$$
\left|\frac{1}{N} \sum_{n=1}^{N} g\left(x+\xi_{n}\right)-\int_{0}^{1} g(x) d x\right|<\epsilon \text { uniformly in } x .
$$

Let $M=\sup _{x \in[0,1]}|f(x)|$, note that $\int f(x) d x=0$, we have

$$
\begin{aligned}
\int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|^{2} d x & \leq M \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right| d x \\
\leq & M \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N}\left(f\left(x+\xi_{n}\right)-g\left(x+\xi_{n}\right)\right)\right| d x \\
& +M \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} g\left(x+\xi_{n}\right)-\int_{0}^{1} g(x) d x\right| d x \\
& +M \int_{0}^{1}\left|\int_{0}^{1} g(x) d x-\int_{0}^{1} f(x) d x\right| d x \\
< & M \int_{0}^{1}|f(x)-g(x)| d x+2 M \epsilon \\
& <3 M \epsilon
\end{aligned}
$$

This establishes the result.
We remark that

- We should also check if h is of period 1 before applying part (a).
- This approach makes no use of the square. The same argument works for any positive integer power.

[^7]
[^0]: ${ }^{1}$ The material and idea presented here are from the 2007-08 MAT3090 class by Prof. Chou Mai Seng (and his TA?).
 ${ }^{2}$ They are from lecture notes 8 of the class mentioned in the first footnote.

[^1]: ${ }^{3}$ This is by textbook Ch3 Theorem 1.1.
 ${ }^{4}$ E.g. by textbook Ch2 p. 43
 ${ }^{5}$ This is by textbook Ch2 Corollary 2.2.

[^2]: ${ }^{6}$ This is the words from the suggested solutions to exercise 8 of the class mentioned in the first footnote.

[^3]: ${ }^{7}$ C.f. this stackexchange post and textbook Ch5 Ex4.

[^4]: ${ }^{8}$ In view of load management, let's skip the "equality holds if and only if" part.
 ${ }^{9} \mathrm{~A}$ student provides this solution.

[^5]: ${ }^{10}$ This solution is adapted from a student's work.

[^6]: ${ }^{11}$ This may be the reason why the authors give us a square in this question.
 ${ }^{12} \mathrm{By}|a+b|^{2} \leq(|a|+|b|)^{2} \leq 2|a|^{2}+2|b|^{2}$.
 ${ }^{13} \mathrm{~A}$ student provides this solution.

[^7]: ${ }^{14}$ This solution is adapted from the work by former TAs.

