TA’s solution to 3093 assignment 6

Ch4, Ex4. (4 maurks)E
Before we start, let’s consider an example:

Let 7 : [0, 27r] — R? be defined by

(cos2t,sin2t) if t € [0, 7)
V(t) =
(2 — cos2t,sin2t) if t € [, 27].

This curve I' looks like the “co” symbol. As

() = (—2sin2t,2cos2t) if t € [0, )
(2sin2t,2cos 2t) if t € (m,27],

and

(T 4+ h) — 7y (m) 2 —cos(2m +2h) —1

hlggl+ h = hlg(I)L : 0 (by L’Hospital’s Rule)
_ im cos(2m +2h) — 1 ~ lim m(m+h) — ’71(71'),
h—0~ h h—0~ h

we see that v € C', and |9/(¢)] # 0 for all ¢ € [0, 27]. Note that

2

2m ™
/ (mvs — 7271) = / (2 cos? 2t + 2sin? 2t)dt + / (4 cos 2t — 2 cos? 2t — 2sin” 2t)dt
0 0 s

2m
:/ (4 cos 2t)dt = 0.

To have an understanding of the isoperimetric inequality when the curve is not simple, please
refer to the following excerpts:

The isoperimetric problem it i Bmeng all clored, simple
ouwwes with Giced lugth 2, 0 the wnct wicle . Rao
the maximad anea I,

!The material and idea presented here are from the 2007-08 MAT3090 class by Prof. Chou Kai Seng (and his TA?).
2They are from lecture notes 8 of the class mentioned in the first footnote.
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Let’s come back to the question now. We shall show the equivalence of the following two state-
ments:

(S1) Given any v : [a,b] — R? where v € C', |7 (t)| # 0 on [a,b], and v(a) = ~(b), writing
y(t) = (x(t),y(t)) we have
<A

a _—
T = 4’

and B, = / N(CaEamE

where

b
NG

Q1=



(S2) Given any 27-periodic function f € C with fOQﬂ f =0, we have
2m ) 2m 9
[ises [T
0 0
(S1)=(S2):

Since |f]* = R(f)2+S(f)? and | f']* = (R(f))? + (S(f)')?, we can assume that f is a real-valued
function rather than a probably complex-valued function. If f* = 0 on [0, 27|, then f is a constant
function. By fo% f = 0, we see that f = 0 as well, so the desired inequality holds plainly.
Therefore, we can assume that f’ is not the zero function on [0, 27].

Given ¢ > 0, for all large N € N we have || f — Sn(f)|l, < e and || f" — Sn(f)], < el Note that
d ~ —_—

Sn(f)(0) = @SN(]”)(H)E Since f is real-valued, we have f(—n) = f(n), whence both Sy(f) and

Sn(f") are real-valued functions. Notice also that since f’ is not the zero function, Sy(f) and

Sn(f') are not the zero trigonometric polynomial for all large NE.

Fix a large N satisfying the aforementioned requirements. By the substitution z = €¥ and the
fundamental theorem of algebra, we see that the equation Sy(f")(#) = 0 can only have finitely
many solutions for € [0,2x]. This implies the equation Sx(f)%(0) + Sx(f")%(8) = 0 can only
have finitely many solutions for 6 € [0, 27].

Here we make an assumption: there exists a 2m-periodic real-valued function o satisfying the

following properties:

e 0 €(C™. ie. o is infinitely differentiable.

o fozwa =0.

e |lofl, <eand ||, <e.
o (Sn(f)+0)?+ (Sn(f)+0')2> 0 on [0,27].

We shall justify this assumption later.
Under this assumption, writing Sy, := Sx(f) + o, we consider v : [0, 27] — R? defined by

v(t) = (— /Ot Sn.o(0)do, SN,J(t)) .

We have v € C!, and |y (t)]> # 0. Since fo%f = 0, the constant coefficient of Sy(f) is zero,
whence 7(0) = vy(27) = (0, Sn(0)). We are allowed to use (S1) now.

We get

/02W<SN,0>2<e>de‘ < (/0 V(8wa)2(6) + <55v,o>2<9)d9)2 |

™

It follows that

2m 2m 2w
/ (Sno)*(0)do < 4i (/ ((Sn.o)* + (5&0)2)) (/ 1> (Cauchy-Schwarz inequality)
0 ™ \Jo ’ 0
1

=3 ( / 7 (S (010 1 / 2”<S;V,a>2<e>d9) -

3This is by textbook Ch3 Theorem 1.1.
1E.g. by textbook Ch2 p.43
SThis is by textbook Ch2 Corollary 2.2.



Hence |[Sn(f) + ol = [[Snelly < HSEVJH2 = |ISn(f") + ¢’||,. Consequently,

1flly < I1F = Sn(H)lly + IS8 (Hlly < &+ [1Sx (],
<e+|Sn(f) +ally + loll,
<e+ ISv(f) + o'y + lloll,
< e+ [ISn(f) = Flly + 1My + llo'lly + lloll,
<de+ |1,

Since € > 0 can be arbitrarily small, the result follows.

It remains to justify such o exists. Since we have alrea;day done so much, let’s try to do it casually.
The idea is to perturb the function Sn(f) a little bit! at each small neighborhood of 6, when
Sn(f)2(60) + Sn(f)*(6o) = 0. We may only need to consider two situations:

0 . . . A . . . ‘ o

Suppose we have an infinitely differentiable “bump function” which vanishes outside a bounded
interval and looks like the following:

Then we can make copies of it and combine them through translations and scalar multiplications.
Therefore, in the first situation, we may use the following o:

6This is the words from the suggested solutions to exercise 8 of the class mentioned in the first footnote.



Then near 6y, Sy(f) + o1 may be like:

so that (Sn(f)+ o1)(0) > 0 near 6.

In the second situation, we may use the following os:




Near 6y, Sn(f) + o2 may be like:

9[)
so that when (Sy(f) + 02)(61) = 0, we have (Sx(f’) + 05)(61) > 0.

The existence of such bump functions may be guaranteed by considering the following function:
given § > 0, define

S T

e @002 if |x — | < 0
gs(x) == ;
0 otherwise.

(S2)=(S1):

Define h : [a,b] — [0, 8,] by h(s) := [ |7/(¢)| dt. Since |¥'| # 0, we can follow the idea of Ch4 Ex1
and consider p : [0, 3,] — R? deﬁned by p = ~yoh~!. Writing ,0( ) = (u(s),v(s)), it satisfies

8y b
(W) + (@)* =1, and /0 u'(s)v(s)ds| = / a:’(t)y(t)dt‘ (by the substitution s = h(t)).

As || # 0, we have 3, > 0. Define

1 if [P (s)u(s)ds > 0
J = f
—1 otherw1se,

8,
V(s) = u(s) - Bi / o(E)de,

and

7C.f. this stackexchange post and textbook Ch5 Ex4.


https://math.stackexchange.com/questions/26628/infinitely-differentiable-function-with-compact-support

Noting that (u/)? + (V')? = 1 and J? = 1, we have

2 By Bry
2= [ = B [ (= g (- v s 2]

57/57 N2 27 72 B,2¢ /m/

> _ [t i

=y (V') = 2V?] + ym J i u'V

_57 & N2 2ys2 Bw/

=2 (V)= + T [ WV
dr Jo 0

Since z(b) = z(a), we have [, u'A = A(u(B,) — u(0)) = 0 for any constant A. Therefore,
By 8,
J/ u'V o= / u'v
0 0

B
/O (V)2 = VP > 0.

/ab x’(t)y(t)dt‘ .

It remains to show that

Define f : [0,27] — R by

£(0) = V()
Then N NN - N
[Fwr= [ (vigo) w-(5) [ wera- [an
and

o ! 57 2o / /B'y ? B’y & / 2 1 & "2
[Tur=(2) [T (vigo) o= (2) [ wera=1 [ o
Since f(0) = f(27), we can extend f to be a 27-periodic function. We have f € C! and

27 I By o By By
i = 5_7/0 V(s)ds = E [/0 v(s)ds —/0 v(s)ds} =0.

By (S2), we have fo% 2 < fOZﬂ(f’)Q. Done.

Ex5. (3 marks) Most students have no problem about this question. A solution may bel

Let o = %: and 5 = %: Then 7, is the fractional part of o™. Now we let U,, = a™ 4+ 5", s0 Uy = 2
and U/; = 1. Now since a and 3 are the two roots of the quadratic equation 2> = z + 1, for any r > 1 we
must have U, .1 = o™ + 8™l =a” + o™ + 37+ g1 = U, + U,_;. Therefore U, is an integer for
any n. Now we notice that |3| < 1, so for sufficiently large n, |3"| < 1/3. Therefore, since a™ = U,, — ",
a” € (U, —1/3,U, + 1/3), implying v,, € (1/3,2/3). Hence #{1 < n < N : v, € (1/3,2/3)} is
a constant for sufficiently large N, so lim #lsns NV n':” € (1/3,2/3)}

N—oo JF\

= 0. Hence {v,};2 is not

equidistributed in [0, 1].

8In view of load management, let’s skip the “equality holds if and only if” part.
9A student provides this solution.




Let’s make a remark. Suppose 6y € (1,00) satisfies the following properties:
o There exist 0;,...,0; € C such that 0 + 07 +---+ 0} € Z for all n € N;
10;] <1V1<i<d.

Then by the same argument as above, we see that the fractional part of 6 is not equidistributed
V5

in [0,1]. The Pisot numbers, which includes the golden ratio , are examples of such 6.

Ex10. (3 marks)

(a). A solution to this part may beld

1 &
S
= Z e2mkin — () 50 we see

N

3 2’T‘lk Al
2mik(z+én) 1i mikén _
N—ool Z .'\"l—lbnoc N Z
n=1 n—=
K
and the limit is uniform to all =. Therefore for any trigonometric polynomial P(zx Z g2rike
1
with [ P(z)dz =0, ¢ =0, Z Plz+6,) =0
J0

Now for a fixed continuous f with [ f(z)dz = 0, for any £ > 0 there exists some trigonometric

(/01 P(x)dx

1 1
< [ |P(xz) — f(x)|dz < ¢, sowe can let r = f P(x)dr and obtain |r| < =.
Jo 0

polynomial P such that |f(x) — P(z)| < ¢ forall # € [0,1]. Then we note that

1
| (P@) = fa)ia

1
Denote Q(x) = P(z) — r, so Q(x) is a trigonometric polynomial with f Q(x) = 0. So we have
0

N N
1
11111 — Z Q(x + &) = 0, so that for sufficiently large N, N ; Qx+&,)| < =. Now
1
ﬁZf(T""‘fn)
1 N 1 N
< Z(f(ﬂin Ple+&))|+ |5 2 (PE+&) - Qr+&)|+ |5 ) Qe +&)
n=1 =1 =1
18 1
< ngf(HénJ —Pl+&)l+ 5D Irl+e
“on=1 U op=1
- Ne NJr fe<ae
- J.;I\Ir JNT B - o

LN Z f(z + &) = 0as desired.
—1

10This solution is adapted from a student’s work.



Approach 1

Given ¢ > 0, we have || f — S, (f)|l, < € for some large mid, Since fol f =0, the constant

term of S,,(f) is zero. Therefore, S,,(f) is a continuous function satisfying fol Sm(f) = 0.
By the result of part (a), we have

nh_{glo N Z Sm(f)(x+&,) =0 uniformly in x.

Consequently, there exists L s.t. for all N > L, for all z € [0, 1], we have

1 N
N LSl +6)| <

whence
Zf m+£n
N 2
Fla+&) = Su(H)@ + &) + 5 > Sm(F)(@ + &)
1
N 2 1 N 2
@< 1 i (2 46) = S+l de+ [ 2|=S 8@+ &)
N Z /0 N;
N 2
Z (2 + &) = Sm(H)(z +&)]|| +2¢°
, 2
( an S ug) +2:% < 4e?
The result follows.
Approachﬁ

Suppose f is integrable and f{]l fdz =0. Let g, () = f(x+&,). Then g, (k) = j-ul Gn(z)e 2R dy —
2mike, ’[}lf(r 4 £, e 2mik(EHin) dr = e27ikén f(E) for k # 0, gn(0) = 1‘01 flz + &,)dr =
i fdz=o0.

Let fn(x) = & Z;: 1f Tr+&n) = § Z;’ 1 n(x). Then f\\, = + Zﬂ L Gn(0) = 0,
Wk £ 0, fn(k) = £ Xlida(k) = f(k)F XL €2k “—“’“} 0. Also, If.-»( )| =
|f{.{ : \||Zn 1€ q"'”“':"| < |f( | Since f is Riemann illtcgmhlc._ f? is also Riemann
integrable, and so oo > jﬂ |f)?dz = ¥, |f =3, |f\. . So by dominated conver-

gence theorem, limy fo |T anl flz+ &) d.‘:: = limy, fo |f..v|2d.'r: =limy Y, | (k)2 =
Y limy |fv (k) =

' This may be the reason why the authors give us a square in this question.
2By |a+b]* < (|a| + b))? < 2|a|* + 2 b]".
13 A student provides this solution.
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A more elementary argument for the highlighted part may be as follows. Fix a ¢ > 0.
~ 2 -~ 2
Since > ‘f(k:)‘ < 00, there exists K s.t. Y5k f(k;)’ < e. Then there exists L s.t.

2
D olkl<K ‘fN(k)‘ < ¢ for all N > L. Consequently, for all N > L we have

i\f?(k)fz S Em| X [Iw) < X w3 [fw] <2

k<K |k|> K k<K |k|>K

Approach Sﬂ

Ex 10(b). For any € > 0 and any Riemann integrable functions f, by Lemma 3.2
in Chapter 2 of the book, there exists a continuous function g such that

1
sup 9(2)] < sup [f(a) and [ [f(2) - g(a)dz < e.
re(0,1] 0

:rf.:[I:l 1]

Define h(z) = g(x)— [ g(x)dz. Then h satisfies condition in (a), so that :=1 h{z+
£n) — 0 uniformly in x. Hence, this means that for N large

1w !
N2 oo +&) [ ofe)i

Let M = sup,¢oq; |f(z)|, note that [ f(z)dz = 0, we have

N
%Zﬂ:r +&n)
n=1

< € uniformly in x.

L’f.'r {_:Mfu MZf (z + &)
N

1
ngu WZ (z+&)—9(z+&))d
ZQI-HE-F. jtx}dx'dx

—|—M£ ‘/; (x}rix—j]. f(x)dz|dz

1
{Mf | f(x)—g(z)|dz+2Me
0

<3Me.

This establishes the result.
We remark that

» We should also check if A is of period 1 before applying part (a).
o This approach makes no use of the square. The same argument works for any positive
integer power.

4This solution is adapted from the work by former TAs.
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