TA's solution to 3093 assignment 5

Ch3, Ex11. (a). (It seems that you already have good solution from tutorial??)
(b). (2 marks)

As the tutorial note shows, the trick is to consider the function

$$
G(t):=g(t)-\frac{1}{T} \int_{0}^{T} g(x) d x
$$

so that we can apply the result of part(a).
As some students suggest, we may also do it as follows:
Although $\int_{0}^{T} g(x) d x$ may not be zero, we always have

$$
\widehat{g^{\prime}}(0)=\frac{1}{T} \int_{0}^{T} g^{\prime}(x) d x=\frac{1}{T}(g(T)-g(0))=0
$$

and

$$
\widehat{g^{\prime}}(n)=\frac{1}{T} \int_{0}^{T} g^{\prime}(x) e^{-i n x 2 \pi / T} d x=\frac{i n 2 \pi}{T} \widehat{g}(n)
$$

Hence

$$
\begin{aligned}
\left|\int_{0}^{T} \bar{f} g\right|^{2} & =\left|T \sum_{-\infty}^{\infty} \overline{\widehat{f}(n)} \widehat{g}(n)\right|^{2} \quad \text { (by Parseval identity) } \\
& =T^{2}\left|\sum_{\substack{-\infty<n<\infty \\
n \neq 0}} \overline{\widehat{f}(n)} \widehat{g}(n)\right|^{2} \quad(\text { as } \widehat{f}(0)=0 \text { by hypothesis) } \\
& \leq T^{2} \sum_{\substack{\infty<n<\infty \\
n \neq 0}}|\widehat{f}(n)|^{2} \sum_{\substack{\infty<n<\infty \\
n \neq 0}}|\widehat{g}(n)|^{2} \quad \text { (Cauchy-Schwarz inequality) } \\
& \leq T^{2} \sum_{-\infty}^{\infty}|\widehat{f}(n)|^{2} \sum_{-\infty}^{\infty}|n|^{2}|\widehat{g}(n)|^{2} \\
& =T^{2} \sum_{-\infty}^{\infty}|\widehat{f}(n)|^{2} \sum_{-\infty}^{\infty}\left|\widehat{g^{\prime}}(n)\right|^{2} \frac{T^{2}}{4 \pi^{2}}=\left(\int_{0}^{T}|f|^{2}\right)\left(\int_{0}^{T}\left|g^{\prime}\right|^{2}\right) \frac{T^{2}}{4 \pi^{2}} \text { (by Parseval identity). }
\end{aligned}
$$

(c). / (Please refer to the tutorial note)

Ex15. (a). /
(b). (1 marks)

Please refer to the tutorial note for a solution. This question should not be difficult, so let's try something new. We introduce the Vinogradov notation:
Given $f, g: X \rightarrow[0, \infty)$, we write $f \ll g$ if there exists a positive constant $C>0$ s.t. for all $x \in X$, we have

$$
f(x) \leq C g(x)
$$

For example,

[^0]- For all $x \in[1, \infty)$, we have $\frac{7 x^{4}}{5 x^{3}+2 x+1} \ll x$;
- Given a fixed $\varepsilon_{0}>0$, we have $\log x \ll x^{\varepsilon_{0}}$ for all $x \in[1, \infty)$;
- $500 \ll 1$;
- $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \ll 1$.

The first holds because $\frac{7 x^{4}}{5 x^{3}+2 x+1} \leq \frac{35 x^{4}+14 x^{2}+7 x}{5 x^{3}+2 x+1}=7 x$, so the implied constant C can be 7. The second holds because $\lim _{x \rightarrow \infty} \frac{\log x}{x^{\varepsilon_{0}}}=0$ by L'Hospital's Rule. As $500 \leq 500 \cdot 1$, the implied constant for the third example can be 500. Finally, the forth holds because the series $\sum \frac{1}{n^{2}}$ converges.
We can also use subscripts to indicate the dependency of the implied constant. For example, we write $\log x<_{\varepsilon} x^{\varepsilon}$, meaning that for some constant $C_{\varepsilon}>0$ depending on ε, we have $\log x \leq C_{\varepsilon} x^{\varepsilon}$ for all $x \in[1, \infty)$.
With this notation, a solution to this hw question may be as follows: Assuming

$$
\widehat{f}(n)=\frac{1}{4 \pi} \int_{-\pi}^{\pi}[f(x)-f(x+\pi / n)] e^{-i n x} d x
$$

we have

$$
|\widehat{f}(n)| \ll \int_{-\pi}^{\pi}\left|f(x)-f\left(x+\frac{\pi}{n}\right)\right| \ll \int_{-\pi}^{\pi}\left|\frac{\pi}{n}\right|^{\alpha} \lll \frac{1}{|n|^{\alpha}}
$$

(c). With the Vinogradov notation, a solution may also be written as follows: We have

$$
f(x+h)-f(x)=\sum_{\substack{0 \leq k<\infty \\ 2^{k} \leq 1 /|h|}} 2^{-k \alpha} e^{i 2^{k} x}\left(e^{i 2^{k} h}-1\right)+\sum_{\substack{0 \leq k<\infty \\ 2^{k}>1| | h \mid}} 2^{-k \alpha} e^{i 2^{k} x}\left(e^{i 2^{k} h}-1\right):=\Sigma_{1}+\Sigma_{2} .
$$

Since ${ }^{\text {II }}$

$$
\left|e^{i 2^{k} h}-1\right|=\left|i \int_{0}^{2^{k} h} e^{i t} d t\right| \leq \int_{0}^{2^{k}|h|}\left|e^{i t}\right| d t=2^{k}|h|
$$

we have

$$
\begin{aligned}
\left|\Sigma_{1}\right| & \leq \sum_{\substack{0 \leq k<\infty \\
2^{k} \leq 1 /|h|}} 2^{-k \alpha} 2^{k}|h|:=|h| \frac{\left(2^{1-\alpha}\right)^{?}-1}{2^{1-\alpha}-1} \\
& \ll_{\alpha}|h|\left(\left(2^{1-\alpha}\right)^{?}-1\right) \leq|h|\left(2^{?}\right)^{1-\alpha} \ll \alpha \alpha|h|\left(\frac{1}{|h|}\right)^{1-\alpha}=|h|^{\alpha} .
\end{aligned}
$$

As

$$
\left|\Sigma_{2}\right| \ll \sum_{\substack{0 \leq k<\infty \\ 2^{k}>1 /|h|}} 2^{-k \alpha} \ll \alpha{ }_{\alpha} \text { 目 }|h|^{\alpha},
$$

we have $|f(x+h)-f(x)| \leq\left|\Sigma_{1}\right|+\left|\Sigma_{2}\right| \ll{ }_{\alpha}|h|^{\alpha}$. The result follows.

[^1]Ex16. (a). /
(b). (2 marks) /
(c). /
(d). With the Vinogradov notation, a solution may also be written as follows:

Assuming

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{h}(x)\right|^{2} d x=\sum_{n=-\infty}^{\infty} 4|\sin n h|^{2}|\widehat{f}(n)|^{2}
$$

where $g_{h}(x):=f(x+h)-f(x-h)$, we have
$\sum_{n=-\infty}^{\infty}|\sin n h|^{2}|\widehat{f}(n)|^{2} \ll \int_{0}^{2 \pi}|f(x+h)-f(x-h)|^{2} d x \ll \alpha_{\alpha}|h|^{2 \alpha} \quad$ (by the Hölder condition).
Now given $p \in \mathbb{N}$, if we choose $h=\pi / 2^{p+1}$, then for any $n \in \mathbb{Z}$ s.t. $2^{p-1}<|n| \leq 2^{p}$, we have

$$
\frac{1}{\sqrt{2}} \leq|\sin n h| \leq 1
$$

whence

$$
\sum_{\substack{n \in \mathbb{Z} \\ 2^{p-1}<|n| \leq 2^{p}}}|\widehat{f}(n)|^{2} \ll \sum_{\substack{n \in \mathbb{Z} \\ 2^{p-1}<|n| \leq 2^{p}}}|\sin n h|^{2}|\widehat{f}(n)|^{2} \leq \sum_{n=-\infty}^{\infty}|\sin n h|^{2}|\widehat{f}(n)|^{2} \lll \alpha|h|^{2 \alpha} \lll<\frac{1}{2^{2 \alpha p}}
$$

Hence,

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}|\widehat{f}(n)| & =|\widehat{f}(0)|+\sum_{p=1}^{\infty} \sum_{\substack{n \in \mathbb{Z} \\
2^{p-1}<|n| \leq 2^{p}}}|\widehat{f}(n)| \leq|\widehat{f}(0)|+\sum_{p=1}^{\infty} \sqrt{\left(\sum_{\substack{n \in \mathbb{Z} \\
2^{p-1}<|n| \leq 2^{p}}} 1^{2}\right)\left(\sum_{\substack{n \in \mathbb{Z} \\
2^{p-1}<|n| \leq 2^{p}}}|\widehat{f}(n)|^{2}\right)} \\
& \ll \alpha|\widehat{f}(0)|+\sum_{p=1}^{\infty} \sqrt{2^{p} \cdot \frac{1}{2^{2 \alpha p}}}=|\widehat{f}(0)|+\sum_{p=1}^{\infty} \frac{1}{2^{(\alpha-0.5) p}}<_{\alpha, f} 1 \text { whenver } \alpha>0.5 .
\end{aligned}
$$

The result follows.
Ch4, Ex1. (a). (2 marks) Let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ be a parametrization for Γ. By the convention of the textbook, this implies $\gamma \in \mathcal{C}^{1}$ and $\gamma^{\prime}(t) \neq(0,0)$ for all $t \in[a, b]$.
(\Rightarrow) If γ is a parametrization by arc-length, then by definition $\left|\gamma^{\prime}\right| \equiv 1$ on $[a, b]$, so

$$
\int_{a}^{s}\left|\gamma^{\prime}(t)\right| d t=\int_{a}^{s} 1 d t=s-a
$$

(\Leftarrow) Suppose for all $s \in[a, b]$ we have

$$
\int_{a}^{s}\left|\gamma^{\prime}(t)\right| d t=s-a
$$

Since $\gamma \in \mathcal{C}^{1}$, we see that $\left|\gamma^{\prime}\right|:[a, b] \rightarrow \mathbb{R}$ is a continuous function. Therefore, by the fundamental theorem of calculus, for all $s \in[a, b]$ we have

$$
\left|\gamma^{\prime}(s)\right|=\frac{d}{d s} \int_{a}^{s}\left|\gamma^{\prime}(t)\right| d t=\frac{d}{d s}(s-a)=1
$$

(b). (3 marks) Let $\eta:[a, b] \rightarrow \mathbb{R}^{2}$ be a parametrization for Γ. Again we require $\eta \in \mathcal{C}^{1}$ and $\eta^{\prime}(t) \neq(0,0)$ for all $t \in[a, b]$. Therefore, by applying the maximum-minimum theorem to $\left|\eta^{\prime}\right|$, we see that there exists a $C>0$ s.t. $\left|\eta^{\prime}\right|>C$ on $[a, b]$. This shows that the function

$$
h(s):=\int_{a}^{s}\left|\eta^{\prime}(t)\right| d t
$$

on $[a, b]$ is strictly monotone. As a result, by a theorem in math2060, we have

$$
\frac{d}{d \xi} h^{-1}(\xi)=\frac{1}{h^{\prime}\left(h^{-1}(\xi)\right)}=\frac{1}{\left|\eta^{\prime}\left(h^{-1}(\xi)\right)\right|}
$$

Therefore, for $\gamma:[0, h(b)] \rightarrow \mathbb{R}^{2}$ defined by $\gamma(\xi):=\eta\left(h^{-1}(\xi)\right)$, we have

$$
\gamma([0, h(b)])=\eta([a, b])=\Gamma, \quad\left|\gamma^{\prime}(\xi)\right|=\left|\eta^{\prime}\left(h^{-1}(\xi)\right) \cdot \frac{d}{d \xi} h^{-1}(\xi)\right|=1
$$

and $\gamma \in \mathcal{C}^{1}$. The result follows.
$\S_{\text {Since }} h^{-1}$ is differentiable, it is continuous. Therefore $\gamma^{\prime}=\frac{\eta^{\prime} \circ h^{-1}}{\left|\eta^{\prime} \circ h^{-1}\right|}$ is a continuous function.

[^0]: *To me this notation is very useful. However, it is not a conventional notation in Mathematics (perhaps because the symbol used is somewhat misleading). Therefore, I suggest you mention the name "Vinogradov" whenever you use it.

[^1]: ${ }^{\dagger}$ The general form of this trick is that for $f:[a, b] \rightarrow \mathbb{C},|f(b)-f(a)|=\left|\int_{a}^{b} f^{\prime}(t) d t\right| \leq \int_{a}^{b}\left|f^{\prime}(t)\right| d t \leq \sup \left|f^{\prime}\right| \cdot|b-a|$. This trick is useful as we do not have mean value theorem for complex-valued functions.
 ${ }^{\ddagger}$ It is because the sum is $:=\frac{2^{-?^{\prime} \alpha}}{1-2^{-\alpha}}<_{\alpha} 2^{-?^{\prime} \alpha}$, where $2^{?^{\prime}}>1 /|h|$.

