TA’s SolutionH to 3093 assignment 4

Ch2, Ex12. (2 marks)ﬂ

12 (p.62) We need to prove
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as n — 00. By replacing s, with s, — s, it suffices to prove the case for s = 0. Now,
given any € > (), we note that s, — 0 and therefore there exists N € N such that
|s,| < e for all n = N. Then we have
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Since N is fixed and |s; + --- + sy i1s a finite number, we can choose an integer
N;i = N such that M+—rlw < €. Hence, whenever n > Njy.
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Thus 3" ¢, 15 Cesaro summable to s.

*This solution is adapted from the work by former TAs.

"In this course, most often we deal with complex numbers rather than real numbers. As C has no natural ordering,
inequality is only meaningful when the involved complex numbers are inside absolute values. Sorry that I have also made
such mistake in my solution to Hw3 Ex17a (“sup f” should be written as “sup |f|” there).



Ex13.

(a)

13(a) (p.62) By letting ¢§ = ¢1 — s, €, = en for n > 2, we see that the series > ¢y
1s Abel summable to s if and only 1if ¢/ 1s Abel summable to 0. Hence 1t suffices to
consider s = 0. Let sp = 0 and sp = ¢1 + ... + ¢n, then
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Since sy ! — 0 as N — oo, thus
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For any € = 0, by noting that s, — 0, we can therefore find Ny € N, such that
|sp| < € for n = Nj. Moreover, s, — 0 implies |s,,| < M, we can find § > 0, such
that (1 — r)M Ny < € whenever 1 — 4 < r < 1. Then we have
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This means lim,—1(1 —r) Y " spr™ = 0. Hence 3 ¢, is Abel summable.

13(b) Let cp = (—1)", then 3_;"(—1)" does not converge. However,
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(c). (2 marks)

Firstly, let’s suppose lim,, .o, 0, =

0, where o, := % >1 s;. By following the computation in

part (a), we have for each r € [0,1)
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The R.H.S. is
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As {o,} is bounded, lim, ., nr™ = 0, and Y _ nr™ converges, we see that it converges to
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when N tends to infinity. This show Y ¢,r™ converges and
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Since o, — 0, there exists M > 0 such that |o,| < M for all n. Moreover, given € > 0, there
exists Ny such that |o,| < e for all n > Ny. Noting the identity
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we have
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Take 6 := |——~ > 0. We see that whenever 1 —§ <r <1,
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This completes the proof for the case lim,,_,, o, = 0.

For the general case, suppose lim,, .o, 0,, = 0. Define ¢; := ¢; — 0 and ¢, := ¢, for all n > 2.
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Therefore, by the above result
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This implies
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which was to be demonstrated.

Remark:

To show .
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the following argument is not without pain:

from 13(a),
we obtain (using the same identity with ¢, replaced by s,,)

(s <] (s o]

Z et =(1—1)Y s =(1- r]gincrn’r“.
n=1

n=1 n=1

It is because the hypothesis in part(a) and part(c) are different. For example, we have to
justify why syr™ ! — 0 when N — oo if 3 ¢, is merely Cesaro summable.

13(d) Note that if ¢, is Cesaro summable (i.e. on = 2252 — ), then
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If ¢, = (—=1)" 'n, then o= (—1)"1, which does not converge. Hence, ¢, is not
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Hence, 1t 1s Abel summable.




Ch3, Ex6. (3 maurks)H

Ex 6 (p. 89). Assume that {a;} is the coefficient of some Riemann integrable

function f, ie. f(z) ~ 307 5 e )(0),
A:(F)(O / f(0)P.(—8)de
P,(#) is an even function on #, and since 1 —2r cos 412 = (1—rcos )2 +r2sin’d = 0

for r € [0,1), so F.(f) = P.(—0) = 1=~ 0. We now have
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On the other hand, lim,_; A.(f)(0) = lim,_; >_,-, : = oco. Therefore, there's no
function with {a;} as its coefficient.

Note that lim,_ Y -, % = oo because for all M = 0, we can choose N such that
PO L~ 2M. Then we choose r so close to I that vV > 1/2, then
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Alternative:

We can also use the Fejér kernel in place of the Poisson kernel. On the one hand, we have
lon(f)(0)] = |(f * Fn)(0)|] < sup|f]; while on the other hand
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Ex8. (a). (1 marks)

Ex 8a (p. 89). f{n) is the same as that of Exercise 6 in Chapter 2. Using the
Parseval’s identity:
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tPlease refer to textbook Ch3 Sec2.2 p.83-84 for more explanation of this question. Thanks to a student for citing this
reference.



Ex 8b. We have computed f(n] in Exercise 4 in Chapter 2. Using the same method
as (a), we have
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Ex9. (2 marks) Note that
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Hence the Fourier series of f is . By the Parseval’s identity, we get
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