TA's solution to 3093 assignment 4
Ch2, Ex12. (2 marks) ${ }^{\text {E }}$

12 (p.62) We need to prove

$$
\frac{s_{1}+s_{2}+\cdots+s_{n}}{n}-s=\frac{\left(s_{1}-s\right)+\left(s_{2}-s\right)+\cdots+\left(s_{n}-s\right)}{n} \rightarrow 0
$$

as $n \rightarrow \infty$. By replacing s_{n} with $s_{n}-s$, it suffices to prove the case for $s=0$. Now, given any $\epsilon>0$, we note that $s_{n} \rightarrow 0$ and therefore there exists $N \in \mathbb{N}$ such that $\left|s_{n}\right|<\epsilon$ for all $n>N$. Then we have

$$
\begin{aligned}
\left|\frac{s_{1}+s_{2}+\cdots+s_{n}}{n}\right| & =\left|\frac{s_{1}+\cdots+s_{N}+s_{N+1}+\cdots+s_{n}}{n}\right| \\
& \leq \frac{\left|s_{1}+\cdots+s_{N}\right|}{n}+\frac{1}{n}\left(\left|s_{N+1}\right|+\cdots+\left|s_{n}\right|\right) \\
& \leq \frac{\left|s_{1}+\cdots+s_{N}\right|}{n}+\left(\frac{n-N}{n}\right) \epsilon \\
& <\frac{\left|s_{1}+\cdots+s_{N}\right|}{n}+\epsilon
\end{aligned}
$$

Since N is fixed and $\left|s_{1}+\cdots+s_{N}\right|$ is a finite number, we can choose an integer $N_{1}>N$ such that $\frac{\left|s_{1}+\cdots+s_{N}\right|}{n}<\epsilon$. Hence, whenever $n>N_{1}$.

$$
\left|\frac{s_{1}+s_{2}+\cdots+s_{n}}{n}\right|<2 \epsilon .
$$

Thus $\sum c_{n}$ is Cesàro summable to s.

[^0]Ex13. (a)
13(a) (p.62) By letting $c_{1}^{\prime}=c_{1}-s, c_{n}^{\prime}=c_{n}$ for $n \geq 2$, we see that the series $\sum c_{n}$ is Abel summable to s if and only if c_{n}^{\prime} is Abel summable to 0 . Hence it suffices to consider $s=0$. Let $s_{0}=0$ and $s_{n}=c_{1}+\ldots+c_{n}$, then

$$
\sum_{n=1}^{N} c_{n} r^{n}=\sum_{n=1}^{N}\left(s_{n}-s_{n-1}\right) r^{n}=\sum_{n=1}^{N} s_{n} r^{n}-r \sum_{n=1}^{N-1} s_{n} r^{n}=(1-r) \sum_{n=1}^{N} s_{n} r^{n}+s_{N} r^{N+1}
$$

Since $s_{N} r^{N+1} \rightarrow 0$ as $N \rightarrow \infty$, thus

$$
\sum_{n=1}^{\infty} c_{n} r^{n}=(1-r) \sum_{n=1}^{\infty} s_{n} r^{n}
$$

For any $\epsilon>0$, by noting that $s_{n} \rightarrow 0$, we can therefore find $N_{0} \in \mathbb{N}$, such that $\left|s_{n}\right|<\epsilon$ for $n>N_{0}$. Moreover, $s_{n} \rightarrow 0$ implies $\left|s_{n}\right| \leq M$, we can find $\delta>0$, such that $(1-r) M N_{0}<\epsilon$ whenever $1-\delta<r<1$. Then we have

$$
\begin{aligned}
\left|(1-r) \sum_{n=1}^{\infty} s_{n} r^{n}\right| & \leq\left|(1-r) \sum_{n=1}^{N_{0}} s_{n} r^{n}\right|+(1-r) \sum_{n=N_{0}+1}^{\infty}\left|s_{n}\right| r^{n} \\
& \leq(1-r) M N_{0}+\epsilon \sum_{n=N_{0}+1}^{\infty} r^{n} \\
& =\epsilon+\epsilon=2 \epsilon .
\end{aligned}
$$

This means $\lim _{r \rightarrow 1}(1-r) \sum_{n=1}^{\infty} s_{n} r^{n}=0$. Hence $\sum c_{n}$ is Abel summable.
(b)

13(b) Let $c_{n}=(-1)^{n}$, then $\sum_{1}^{\infty}(-1)^{n}$ does not converge. However,

$$
\lim _{r \rightarrow 1} \sum_{n=1}^{\infty}(-1)^{n} r^{n}=\lim _{r \rightarrow 1} \frac{-r}{1+r}=-\frac{1}{2}
$$

(c). (2 marks)

Firstly, let's suppose $\lim _{n \rightarrow \infty} \sigma_{n}=0$, where $\sigma_{n}:=\frac{1}{n} \sum_{1}^{n} s_{i}$. By following the computation in part (a), we have for each $r \in[0,1)$

$$
\sum_{n=1}^{N} c_{n} r^{n}=(1-r) \sum_{n=1}^{N} s_{n} r^{n}+s_{N} r^{N+1}
$$

The R.H.S. is

$$
\begin{aligned}
& =(1-r) \sum_{n=1}^{N}\left(n \sigma_{n}-(n-1) \sigma_{n-1}\right) r^{n}+\left(N \sigma_{N}-(N-1) \sigma_{N-1}\right) r^{N+1} \\
& =(1-r)\left[\sum_{n=1}^{N-1} n \sigma_{n} r^{n}-\sum_{n=1}^{N-1} n \sigma_{n} r^{n+1}+N \sigma_{N} r^{N}\right]+\left(N \sigma_{N}-(N-1) \sigma_{N-1}\right) r^{N+1} \\
& =(1-r)^{2} \sum_{n=1}^{N-1} n \sigma_{n} r^{n}+N \sigma_{N} r^{N}-(N-1) \sigma_{N-1} r^{N+1} .
\end{aligned}
$$

As $\left\{\sigma_{n}\right\}$ is bounded, $\lim _{n \rightarrow \infty} n r^{n}=0$, and $\sum n r^{n}$ converges, we see that it converges to

$$
(1-r)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n}
$$

when N tends to infinity. This show $\sum c_{n} r^{n}$ converges and

$$
\sum_{n=1}^{\infty} c_{n} r^{n}=(1-r)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n}
$$

Our aim is to show

$$
\lim _{r \uparrow 1} \sum_{n=1}^{\infty} c_{n} r^{n}=0
$$

Since $\sigma_{n} \rightarrow 0$, there exists $M>0$ such that $\left|\sigma_{n}\right|<M$ for all n. Moreover, given $\varepsilon>0$, there exists N_{0} such that $\left|\sigma_{n}\right|<\varepsilon$ for all $n \geq N_{0}$. Noting the identity

$$
\sum_{n=1}^{\infty} n r^{n}=r \sum_{n=1}^{\infty} \frac{d r^{n}}{d r}=r \frac{d}{d r}\left(\frac{r}{1-r}\right)=\frac{r}{(1-r)^{2}}
$$

we have

$$
(1-r)^{2}\left|\sum_{N_{0}+1}^{\infty} n \sigma_{n} r^{n}\right| \leq(1-r)^{2}\left(\sum_{n=1}^{\infty} n r^{n}\right) \varepsilon=\varepsilon r<\varepsilon
$$

Take $\delta:=\sqrt{\frac{\varepsilon}{\left(M \sum_{1}^{N_{0}} n\right)}}>0$. We see that whenever $1-\delta<r<1$,

$$
\left|\sum_{n=1}^{\infty} c_{n} r^{n}\right| \leq \delta^{2}\left|\left(\sum_{1}^{N_{0}} n \sigma_{n} r^{n}\right)\right|+(1-r)^{2}\left|\sum_{N_{0}+1}^{\infty} n \sigma r^{n}\right| \leq 2 \varepsilon
$$

This completes the proof for the case $\lim _{n \rightarrow \infty} \sigma_{n}=0$.
For the general case, suppose $\lim _{n \rightarrow \infty} \sigma_{n}=\sigma$. Define $\widetilde{c_{1}}:=c_{1}-\sigma$ and $\widetilde{c_{n}}:=c_{n}$ for all $n \geq 2$. Then we have $\widetilde{s_{n}}=s_{n}-\sigma$ and $\widetilde{\sigma_{n}}=\frac{\widetilde{s_{1}}+\cdots+\widetilde{s_{n}}}{n}=\frac{s_{1}+\cdots+s_{n}-n \sigma}{n}=\sigma_{n}-\sigma \rightarrow 0$. Therefore, by the above result

$$
\lim _{r \uparrow 1} \sum_{n=1}^{\infty} \widetilde{c_{n}} r^{n}=0 .
$$

This implies

$$
\lim _{r \uparrow 1} \sum_{n=1}^{\infty} c_{n} r^{n}=\lim _{r \uparrow 1}\left(\sigma r+\sum_{n=1}^{\infty} \widetilde{c_{n}} r^{n}\right)=\sigma,
$$

which was to be demonstrated.

Remark:

To show

$$
\sum_{n=1}^{\infty} c_{n} r^{n}=(1-r)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n}
$$

the following argument is not without pain:
from 13(a),
we obtain (using the same identity with c_{n} replaced by s_{n})

$$
\sum_{n=1}^{\infty} c_{n} r^{n}=(1-r) \sum_{n=1}^{\infty} s_{n} r^{n}=(1-r)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n}
$$

It is because the hypothesis in part(a) and part(c) are different. For example, we have to justify why $s_{N} r^{N+1} \rightarrow 0$ when $N \rightarrow \infty$ if $\sum c_{n}$ is merely Cesàro summable.
(d)

13(d) Note that if c_{n} is Cesàro summable (i.e. $\sigma_{n}=\frac{s_{1}+\ldots+s_{n}}{n} \rightarrow \sigma$), then

$$
\frac{s_{n}}{n}=\frac{n \sigma_{n}-(n-1) \sigma_{n-1}}{n}=\sigma_{n}-\frac{n-1}{n} \sigma_{n-1} \longrightarrow 0 .
$$

Hence,

$$
\frac{c_{n}}{n}=\frac{s_{n}-s_{n-1}}{n}=\frac{s_{n}}{n}-\frac{n-1}{n} \frac{s_{n-1}}{n-1} \longrightarrow 0 .
$$

If $c_{n}=(-1)^{n-1} n$, then $\frac{c_{n}}{n}=(-1)^{n-1}$, which does not converge. Hence, c_{n} is not Cesàro summable. However, $\sum_{n=1}^{\infty}(-1)^{n-1} n r^{n}=\frac{r}{(1+r)^{2}}$, so

$$
\lim _{r \rightarrow 1} \sum_{n=1}^{\infty}(-1)^{n-1} n r^{n}=\frac{1}{4}
$$

Hence, it is Abel summable.

Ch3, Ex6. (3 marks) ${ }^{\text {柬 }}$
Ex 6 (p. 89). Assume that $\left\{a_{k}\right\}$ is the coefficient of some Riemann integrable function f, i.e. $f(x) \sim \sum_{k=1}^{\infty} \frac{e^{i k x}}{k}$. Consider $A_{r}(f)(0)$,

$$
A_{r}(f)(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) P_{r}(-\theta) d \theta
$$

$P_{r}(\theta)$ is an even function on θ, and since $1-2 r \cos \theta+r^{2}=(1-r \cos \theta)^{2}+r^{2} \sin ^{2} \theta>0$ for $r \in[0,1)$, so $P_{r}(\theta)=P_{r}(-\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}>0$. We now have

$$
\begin{aligned}
\left|A_{r}(f)(0)\right| & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)| P_{r}(-\theta) d \theta \\
& \leq \frac{1}{2 \pi} \sup _{\theta}|f(\theta)| \int_{-\pi}^{\pi} P_{r}(-\theta) d \theta \\
& =\sup _{\theta}|f(\theta)|<\infty
\end{aligned}
$$

On the other hand, $\lim _{r \rightarrow 1} A_{r}(f)(0)=\lim _{r \rightarrow 1} \sum_{k=1}^{\infty} \frac{r^{k}}{k}=\infty$. Therefore, there's no function with $\left\{a_{k}\right\}$ as its coefficient.
Note that $\lim _{r \rightarrow 1} \sum_{k=1}^{\infty} \frac{r^{k}}{k}=\infty$ because for all $M>0$, we can choose N such that $\sum_{k=1}^{N} \frac{1}{k}>2 M$. Then we choose r so close to 1 that $r^{N} \geq 1 / 2$, then

$$
\sum_{k=1}^{\infty} \frac{r^{k}}{k} \geq \sum_{k=1}^{N} \frac{r^{k}}{k} \geq \frac{1}{2} \sum_{k=1}^{N} \frac{1}{k} \geq M
$$

Alternative:

We can also use the Fejér kernel in place of the Poisson kernel. On the one hand, we have $\left|\sigma_{N}(f)(0)\right|=\left|\left(f * F_{N}\right)(0)\right| \leq \sup |f|$; while on the other hand

$$
\begin{aligned}
\left|\sigma_{N}(f)(0)\right| & =\left|\frac{1 \cdot(N-1)+\frac{1}{2} \cdot(N-2)+\cdots+\frac{1}{N-1} \cdot(1)}{N}\right| \\
& \geq \frac{1 \cdot(N-1)+\frac{1}{2} \cdot(N-2)+\cdots+\frac{1}{\lfloor N / 2\rfloor} \cdot(N-\lfloor N / 2\rfloor)}{N}
\end{aligned}
$$

which is $\gtrsim \frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{N / 2}\right) \rightarrow \infty$ when $N \rightarrow \infty$.
Ex8. (a). (1 marks)
Ex 8a (p. 89). $\widehat{f}(n)$ is the same as that of Exercise 6 in Chapter 2. Using the Parseval's identity:

$$
\left(\frac{\pi}{2}\right)^{2}+2 \sum_{n=0}^{\infty}\left(\frac{-2}{(2 n+1)^{2} \pi}\right)^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)|^{2} d \theta=\frac{\pi^{2}}{3} .
$$

This implies

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96} .
$$

Also, $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}+\frac{1}{2^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}$. Hence,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} .
$$

[^1](b)

Ex 8 b. We have computed $\widehat{f}(n)$ in Exercise 4 in Chapter 2. Using the same method as (a), we have

$$
2 \cdot \frac{16}{\pi^{2}} \cdot \sum_{k>0, k \text { odd }} \frac{1}{k^{6}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)|^{2} d \theta=\frac{\pi^{4}}{30} .
$$

Hence, $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{6}}=\frac{\pi^{6}}{960}$ follows. As

$$
\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{6}}+\frac{1}{2^{6}} \sum_{n=1}^{\infty} \frac{1}{n^{6}},
$$

we have $\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}$.
Ex9. (2 marks) Note that

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\pi}{\sin \pi \alpha} e^{i(\pi-x) \alpha} e^{-i n x} d x=\frac{1}{2 \sin \pi \alpha} \int_{0}^{2 \pi} e^{i \pi \alpha} e^{-i(n+\alpha) x} d x \\
& =\frac{e^{i \pi \alpha}}{2 \sin \pi \alpha}\left[-\frac{e^{-i(n+\alpha) x}}{i(n+\alpha)}\right]_{0}^{2 \pi}=\frac{e^{i \pi \alpha}}{2 \sin \pi \alpha} \frac{1-e^{-i \alpha 2 \pi}}{i(n+\alpha)}=\frac{1}{n+\alpha}
\end{aligned}
$$

Hence the Fourier series of f is $\sum_{n=-\infty}^{\infty} \frac{e^{i n x}}{n+\alpha}$. By the Parseval's identity, we get

$$
\sum_{-\infty}^{\infty} \frac{1}{(n+\alpha)^{2}}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\pi}{\sin \pi \alpha} e^{i(\pi-x) \alpha}\right|^{2} d x=\frac{\pi^{2}}{\sin ^{2} \pi \alpha}
$$

[^0]: *This solution is adapted from the work by former TAs.
 ${ }^{\dagger}$ In this course, most often we deal with complex numbers rather than real numbers. As \mathbb{C} has no natural ordering, inequality is only meaningful when the involved complex numbers are inside absolute values. Sorry that I have also made such mistake in my solution to $\mathrm{Hw} 3 \operatorname{Ex} 17$ a ("sup f " should be written as "sup $|f|$ " there).

[^1]: ${ }^{\ddagger}$ Please refer to textbook Ch3 Sec2.2 p.83-84 for more explanation of this question. Thanks to a student for citing this reference.

