
TA’s solution∗ to 3093 assignment 4

Ch2, Ex12. (2 marks)†

∗This solution is adapted from the work by former TAs.
†In this course, most often we deal with complex numbers rather than real numbers. As C has no natural ordering,

inequality is only meaningful when the involved complex numbers are inside absolute values. Sorry that I have also made
such mistake in my solution to Hw3 Ex17a (“sup f” should be written as “sup |f |” there).
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Ex13. (a)

(b)

(c). (2 marks)
Firstly, let’s suppose limn→∞ σn = 0, where σn := 1

n

∑n
1 si. By following the computation in

part (a), we have for each r ∈ [0, 1)

N∑
n=1

cnr
n = (1− r)

N∑
n=1

snr
n + sNr

N+1.
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The R.H.S. is

= (1− r)
N∑

n=1

(nσn − (n− 1)σn−1)r
n + (NσN − (N − 1)σN−1)r

N+1

= (1− r)

[
N−1∑
n=1

nσnr
n −

N−1∑
n=1

nσnr
n+1 +NσNr

N

]
+ (NσN − (N − 1)σN−1)r

N+1

= (1− r)2
N−1∑
n=1

nσnr
n +NσNr

N − (N − 1)σN−1r
N+1.

As {σn} is bounded, limn→∞ nrn = 0, and
∑

nrn converges, we see that it converges to

(1− r)2
∞∑
n=1

nσnr
n

when N tends to infinity. This show
∑

cnr
n converges and

∞∑
n=1

cnr
n = (1− r)2

∞∑
n=1

nσnr
n.

Our aim is to show
lim
r↑1

∞∑
n=1

cnr
n = 0.

Since σn → 0, there exists M > 0 such that |σn| < M for all n. Moreover, given ε > 0, there
exists N0 such that |σn| < ε for all n ≥ N0. Noting the identity

∞∑
n=1

nrn = r
∞∑
n=1

drn

dr
= r

d

dr

(
r

1− r

)
=

r

(1− r)2
,

we have

(1− r)2

∣∣∣∣∣
∞∑

N0+1

nσnr
n

∣∣∣∣∣ ≤ (1− r)2

(
∞∑
n=1

nrn

)
ε = εr < ε.

Take δ :=
√

ε(
M
∑N0

1 n
) > 0. We see that whenever 1− δ < r < 1,

∣∣∣∣∣
∞∑
n=1

cnr
n

∣∣∣∣∣ ≤ δ2

∣∣∣∣∣
(

N0∑
1

nσnr
n

)∣∣∣∣∣+ (1− r)2

∣∣∣∣∣
∞∑

N0+1

nσrn

∣∣∣∣∣ ≤ 2ε.

This completes the proof for the case limn→∞ σn = 0.
For the general case, suppose limn→∞ σn = σ. Define c̃1 := c1 − σ and c̃n := cn for all n ≥ 2.
Then we have s̃n = sn − σ and σ̃n =

s̃1 + · · ·+ s̃n
n

=
s1 + · · ·+ sn − nσ

n
= σn − σ → 0.

Therefore, by the above result

lim
r↑1

∞∑
n=1

c̃nr
n = 0.
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This implies

lim
r↑1

∞∑
n=1

cnr
n = lim

r↑1

(
σr +

∞∑
n=1

c̃nr
n

)
= σ,

which was to be demonstrated.

Remark:
To show

∞∑
n=1

cnr
n = (1− r)2

∞∑
n=1

nσnr
n,

the following argument is not without pain:

It is because the hypothesis in part(a) and part(c) are different. For example, we have to
justify why sNr

N+1 → 0 when N → ∞ if
∑

cn is merely Cesàro summable.

(d)
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Ch3, Ex6. (3 marks)‡

Alternative:
We can also use the Fejér kernel in place of the Poisson kernel. On the one hand, we have
|σN(f)(0)| = |(f ∗ FN)(0)| ≤ sup |f | ; while on the other hand

|σN(f)(0)| =

∣∣∣∣∣1 · (N − 1) + 1
2
· (N − 2) + · · ·+ 1

N−1
· (1)

N

∣∣∣∣∣
≥

1 · (N − 1) + 1
2
· (N − 2) + · · ·+ 1

⌊N/2⌋ · (N − ⌊N/2⌋)
N

,

which is & 1
2
(1 + 1

2
+ · · ·+ 1

N/2
) → ∞ when N → ∞.

Ex8. (a). (1 marks)

‡Please refer to textbook Ch3 Sec2.2 p.83-84 for more explanation of this question. Thanks to a student for citing this
reference.

5



(b)

Ex9. (2 marks) Note that

f̂(n) =
1

2π

∫ 2π

0

π

sin πα
ei(π−x)αe−inxdx =

1

2 sin πα

∫ 2π

0

eiπαe−i(n+α)xdx

=
eiπα

2 sin πα

[
−e−i(n+α)x

i(n+ α)

]2π
0

=
eiπα

2 sin πα

1− e−iα2π

i(n+ α)
=

1

n+ α
.

Hence the Fourier series of f is
∑∞

n=−∞
einx

n+ α
. By the Parseval’s identity, we get

∞∑
−∞

1

(n+ α)2
=

1

2π

∫ 2π

0

∣∣∣ π

sin πα
ei(π−x)α

∣∣∣2 dx =
π2

sin2 πα
.
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