
TA’s solution∗ to 3093 assignment 3

Ch2, Ex9. (6 marks)

(b) We want to show that if b− a ̸= 0, 2π, then

∑
n̸=0

∣∣∣∣e−ina − e−inb

n

∣∣∣∣ = ∞.

This can be done by one of the following arguments:

Approach 1

Let ϕ0 := b− a. We have∣∣∣∣e−ina − e−inb

n

∣∣∣∣ = ∣∣∣∣ein(b−a) − 1

n

∣∣∣∣ = ∣∣∣∣einϕ0 − 1

n

∣∣∣∣ .
Observe that the sequence {zn} :=

{
einϕ0

}∞
n=1

represents successive rotations on the unit
circle T in the complex plane by angle ϕ0 (zn+1 = zn · eiϕ0). We want to show that for many
values of n,

∣∣einϕ0 − 1
∣∣ is not small. Since 0 < ϕ0 < 2π , we claim that if zn is close to 1, then

after rotating it by angle ϕ0, its new position (i.e. zn+1) is no longer close to 1. It should be
clear by drawing a picture. To be precise, k0 ∈ Z

|nϕ0 − 2k0π| ≤
min {ϕ0, 2π − ϕ0}

2
:= ε0

⇒


(n+ 1)ϕ0 − 2k0π ≥ ϕ0 − |nϕ0 − 2k0π| ≥ ϕ0 −

ϕ0

2
≥ ε0

2(k0 + 1)π − (n+ 1)ϕ0 = (2π − ϕ0) + (2k0π − nϕ0) ≥ (2π − ϕ0)−
(2π − ϕ0)

2
≥ ε0.

As a result, for c := |eiε0 − 1| > 0, we have |zn − 1| < c ⇒ |zn+1 − 1| ≥ c, whence

∑
n̸=0

∣∣∣∣e−ina − e−inb

n

∣∣∣∣ ≥ ∞∑
n=1

∣∣∣∣e−ina − e−inb

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣zn − 1

n

∣∣∣∣ ≥ †
∑
n∈N
n even

c

n
= ∞.

∗This solution is adapted from the work by former TAs.
†Let {i1, i2, . . .} be precisely those positive integers such that |zik − 1| ≥ c. Then 2k ≥ ik by induction on k: if

ik+1 ̸= ik + 1, then ik+1 = ik + 2 ≤ 2k + 2 = 2(k + 1); else ik+1 = ik + 1 ≤ 2k + 1 ≤ 2(k + 1).
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Approach 2

Approach 3

This approach combines the hint of the question with the observation in approach 1. The key
point is that if |sinnθ0| ≈ 0, then |cosnθ0| ≈ 1, so |sin(n+ 1)θ0| = |sinnθ0 cos θ0 + cosnθ0 sin θ0| ≥
|cosnθ0 sin θ0| − |sinnθ0 cos θ0| ≈ |sin θ0|. We omit the detail.

Approach 4‡

Observe that ∑
n≥1

∣∣∣∣sinnθ0n

∣∣∣∣ ≥ ∑
n≥1

sin2 nθ0
n

=
∑
n≥1

1− cos 2nθ0
2n

.

By Dirichlet’s test
∑

n≥1

cos 2nθ0
n

converges (see part (c)), while
∑ 1

2n
= ∞. The result

follows.
‡A student provides this solution.
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(c)

Let’s make some remarks. Firstly, note that we deal with a symmetric sum rather than an

asymmetric one. Consider for example a = −π, b = 0, x = π. Then
∑ ein(x−b)

n
=

∑ (−1)n

n

converges, but
∑ ein(x−a)

n
=

∑ 1

n
diverges if it is an asymmetric sum. Secondly§, to show

that
∣∣∣∑N

1 sinnθ
∣∣∣, ∣∣∣∑N

1 cosnθ
∣∣∣ is bounded for “good” θ, observe that they are the absolute

values of the real and imaginary part of
N∑
1

einθ,

so they are less than or equal to∣∣∣∣∣
N∑
1

einθ

∣∣∣∣∣ =
∣∣∣∣eiθ − ei(N+1)θ

1− eiθ

∣∣∣∣ ≤
∣∣eiθ∣∣+ ∣∣ei(N+1)θ

∣∣
|1− eiθ|

=
2

|1− eiθ|
.

Finally, please note textbook Ch3 Theorem 2.1.

Ex15. (1 marks) Let w = eix. We assume w ̸= 1. Then Dk(x) =
∑k

ℓ=−k w
ℓ =

w−k(1− w2k+1)

1− w
=

w−k

1− w
− wk+1

1− w
. Hence

NFN(x) =
0∑

k=−(N−1)

wk

1− w
−

N−1∑
k=0

wk+1

1− w
=

w−(N−1)(1− wN)

(1− w)2
− w(1− wN)

(1− w)2

=
w(w−N − 2 + wN)

(1− w)2
=

(wN/2 − w−N/2)2

[w−1/2(1− w)]2
=

(wN/2 − w−N/2)2

(w−1/2 − w1/2)2
=

sin2(Nx/2)

sin2(x/2)
.

The result follows.
§A student provides this idea.
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Ex17. (a). (3 marks) For each fixed r, Pr(·) is an even function. Therefore

1

2π

∫ 0

−π

Pr(ξ)dξ =
1

2π

∫ π

0

Pr(ξ)dξ.

Since their sum is 1, they equal 1/2. We then decompose Arf(θ) as

Arf(θ) =
1

2π

∫ 0

−π

f(θ − ξ)Pr(ξ)dξ +
1

2π

∫ π

0

f(θ − ξ)Pr(ξ)dξ.

For any ε > 0, there exists δ > 0 such that for all 0 < ξ < δ, we have |f(θ−)− f(θ − ξ)| < ε.
For this δ, there exists r0 < 1 such that for all r0 ≤ r < 1, we have∫ π

δ

Pr(ξ)dξ < ε.

With Pr(·) non-negative and f bounded on T (since f is Riemann integrable), we see that∣∣∣∣ 12π
∫ π

0

f(θ − ξ)Pr(ξ)dξ −
f(θ−)

2

∣∣∣∣ = ∣∣∣∣ 12π
∫ π

0

[
f(θ − ξ)− f(θ−)

]
Pr(ξ)dξ

∣∣∣∣
≤ 1

2π

∫ δ

0

∣∣f(θ − ξ)− f(θ−)
∣∣Pr(ξ)dξ

+
1

2π

∫ π

δ

∣∣f(θ − ξ)− f(θ−)
∣∣Pr(ξ)dξ

≤ 1

2π

∫ δ

0

εPr(ξ)dξ +
2 sup f

2π

∫ π

δ

Pr(ξ)dξ

< ε+
sup f

π
ε.

This shows
lim
r↑1

1

2π

∫ π

0

f(θ − ξ)Pr(ξ)dξ =
f(θ−)

2
.

Similarly,

lim
r↑1

1

2π

∫ 0

−π

f(θ − ξ)Pr(ξ)dξ =
f(θ+)

2
.

The result follows.

Alternative¶

¶A student provides this solution.
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(b) Since the Fejér kernel is also a good kernel and it is an even function, we can prove the result
by applying the same procedure as in (a). We therefore omit the detail.
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