TA's solution to 3093 assignment 3
Ch2, Ex9. (6 marks)
$9(\mathrm{a})(\mathrm{p} .61)$ It is easy to see $\hat{f}(0)=\frac{b-a}{2 \pi}$. If $n \neq 0$,

$$
\widehat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\frac{1}{2 \pi} \int_{a}^{b} e^{-i n x} d x=\frac{e^{-i n a}-e^{-i n b}}{2 \pi i n} .
$$

Hence,

$$
f(x) \sim \frac{b-a}{2 \pi}+\sum_{n \neq 0} \frac{e^{-i n a}-e^{-i n b}}{2 \pi i n} e^{i n x} .
$$

(b) We want to show that if $b-a \neq 0,2 \pi$, then

$$
\sum_{n \neq 0}\left|\frac{e^{-i n a}-e^{-i n b}}{n}\right|=\infty .
$$

This can be done by one of the following arguments:

## Approach 1

Let $\phi_{0}:=b-a$. We have

$$
\left|\frac{e^{-i n a}-e^{-i n b}}{n}\right|=\left|\frac{e^{i n(b-a)}-1}{n}\right|=\left|\frac{e^{i n \phi_{0}}-1}{n}\right| .
$$

Observe that the sequence $\left\{z_{n}\right\}:=\left\{e^{i n \phi_{0}}\right\}_{n=1}^{\infty}$ represents successive rotations on the unit circle $\mathbb{T}$ in the complex plane by angle $\phi_{0}\left(z_{n+1}=z_{n} \cdot e^{i \phi_{0}}\right)$. We want to show that for many values of $n,\left|e^{i{ }^{i n} \phi_{0}}-1\right|$ is not small. Since $0<\phi_{0}<2 \pi$, we claim that if $z_{n}$ is close to 1 , then after rotating it by angle $\phi_{0}$, its new position (i.e. $z_{n+1}$ ) is no longer close to 1 . It should be clear by drawing a picture. To be precise,

$$
\begin{aligned}
& \left\{\begin{array}{l}
k_{0} \in \mathbb{Z} \\
\left|n \phi_{0}-2 k_{0} \pi\right| \leq \frac{\min \left\{\phi_{0}, 2 \pi-\phi_{0}\right\}}{2}:=\varepsilon_{0}
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
(n+1) \phi_{0}-2 k_{0} \pi \geq \phi_{0}-\left|n \phi_{0}-2 k_{0} \pi\right| \geq \phi_{0}-\frac{\phi_{0}}{2} \geq \varepsilon_{0} \\
2\left(k_{0}+1\right) \pi-(n+1) \phi_{0}=\left(2 \pi-\phi_{0}\right)+\left(2 k_{0} \pi-n \phi_{0}\right) \geq\left(2 \pi-\phi_{0}\right)-\frac{\left(2 \pi-\phi_{0}\right)}{2} \geq \varepsilon_{0} .
\end{array}\right.
\end{aligned}
$$

As a result, for $c:=\left|e^{i \varepsilon_{0}}-1\right|>0$, we have $\left|z_{n}-1\right|<c \Rightarrow\left|z_{n+1}-1\right| \geq c$, whence

$$
\sum_{n \neq 0}\left|\frac{e^{-i n a}-e^{-i n b}}{n}\right| \geq \sum_{n=1}^{\infty}\left|\frac{e^{-i n a}-e^{-i n b}}{n}\right|=\sum_{n=1}^{\infty}\left|\frac{z_{n}-1}{n}\right| \geq \mathbb{\boxtimes} \sum_{\substack{n \in \mathbb{N} \\ n \text { even }}} \frac{c}{n}=\infty .
$$

[^0]Approach 2
9(b). The Fourier series does not converge absolutely means that we need to show

$$
\sum_{n \neq 0}\left|\frac{e^{-i n a}-e^{-i n b}}{2 \pi i n} e^{i n x}\right|=\infty
$$

Denote $\theta_{0}=\frac{b-a}{2}$,

$$
\begin{align*}
\sum_{n \neq 0}\left|\frac{e^{-i n a}-e^{-i n b}}{2 \pi i n} e^{i n x}\right| & =\sum_{n \neq 0}\left|e^{-i n(b+a) / 2} \frac{e^{i n(b-a) / 2}-e^{-i n(b-a) / 2}}{2 \pi i n}\right|  \tag{0.1}\\
& =\sum_{n \neq 0}\left|\frac{\sin n \theta_{0}}{\pi n}\right|
\end{align*}
$$

Note that from the assumption, $\theta_{0}<\pi$. Hence, we can find some $c>0$ so that

$$
\frac{\pi-2 \sin ^{-1} c}{\theta_{0}}>1
$$

This means for all integers $k \geq 1$, the length of the intervals $\left(\frac{\pi k+\sin ^{-1} c}{\theta_{0}}, \frac{\pi(k+1)-\sin ^{-1} c}{\theta_{0}}\right)$ is equal to $\frac{\pi-2 \sin ^{-1} c}{\theta_{0}}>1$. This implies there exists some integer $n_{k}$ such that

$$
n_{k} \theta_{0} \in\left(\pi k+\sin ^{-1} c, \pi(k+1)-\sin ^{-1} c\right) .
$$

This means that $n_{k} \leq \frac{\pi(k+1)-\sin ^{-1} c}{\theta_{0}} \leq \frac{\pi(k+1)}{\theta_{0}}$ and $\left|\sin n_{k} \theta_{0}\right| \geq c$. Hence,

$$
(0.1) \geq \sum_{n>0}\left|\frac{\sin n \theta_{0}}{\pi n}\right| \geq \sum_{k=1}^{\infty}\left|\frac{\sin n_{k} \theta_{0}}{\pi n_{k}}\right| \geq \sum_{k=1}^{\infty} \frac{c}{\pi \frac{\pi(k+1)}{\theta_{0}}}=\frac{\theta_{0}}{c \pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k+1} .
$$

As the series $\sum_{k=1}^{\infty} \frac{1}{k+1}=\infty$, the proof is completed.
Remark. Drawing a graph of $y=|\sin x|$ helps visualizing the argument.

## Approach 3

This approach combines the hint of the question with the observation in approach 1. The key point is that if $\left|\sin n \theta_{0}\right| \approx 0$, then $\left|\cos n \theta_{0}\right| \approx 1$, so $\left|\sin (n+1) \theta_{0}\right|=\left|\sin n \theta_{0} \cos \theta_{0}+\cos n \theta_{0} \sin \theta_{0}\right| \geq$ $\left|\cos n \theta_{0} \sin \theta_{0}\right|-\left|\sin n \theta_{0} \cos \theta_{0}\right| \approx\left|\sin \theta_{0}\right|$. We omit the detail.
Approach 囲

Observe that

$$
\sum_{n \geq 1}\left|\frac{\sin n \theta_{0}}{n}\right| \geq \sum_{n \geq 1} \frac{\sin ^{2} n \theta_{0}}{n}=\sum_{n \geq 1} \frac{1-\cos 2 n \theta_{0}}{2 n}
$$

By Dirichlet's test $\sum_{n \geq 1} \frac{\cos 2 n \theta_{0}}{n}$ converges (see part (c)), while $\sum \frac{1}{2 n}=\infty$. The result follows.

[^1](c)

9(c). Note that

$$
\begin{aligned}
& \frac{e^{-i n a}-e^{-i n b}}{2 \pi i n} e^{i n x}+\frac{e^{-i(-n) a}-e^{-i(-n) b}}{2 \pi i(-n)} e^{i(-n) x} \\
= & \frac{1}{2 \pi i n}\left[\left(e^{i n(x-a)}-e^{-i n(x-a)}\right)-\left(e^{i n(x-b)}-e^{-i n(x-b)}\right)\right] \\
= & \frac{1}{\pi n}(\sin n(x-a)-\sin n(x-b))
\end{aligned}
$$

The Fourier series of $f$ becomes

$$
\frac{b-a}{2 \pi}+\sum_{n \geq 1} \frac{1}{\pi n}(\sin n(x-a)-\sin n(x-b)) .
$$

By the Dirichlet's Test (Ex 7b (p.60)), $\sum_{n \geq 1} \frac{\sin n(x-a)}{n}$ and $\sum_{n \geq 1} \frac{\sin n(x-b)}{n}$ converge for all $x$. Hence the Fourier series converges at every point $x$.

If $a=-\pi$ and $b=\pi$, then $\widehat{f}(n)=0$ for $n \neq 0$, then the Fourier series of $f$ is $\frac{b-a}{2 \pi} \equiv 1$ is equal to $f$ itself.

Let's make some remarks. Firstly, note that we deal with a symmetric sum rather than an asymmetric one. Consider for example $a=-\pi, b=0, x=\pi$. Then $\sum \frac{e^{i n(x-b)}}{n}=\sum \frac{(-1)^{n}}{n}$ converges, but $\sum \frac{e^{i n(x-a)}}{n}=\sum \frac{1}{n}$ diverges if it is an asymmetric sum. Secondly, to show that $\left|\sum_{1}^{N} \sin n \theta\right|,\left|\sum_{1}^{N} \cos n \theta\right|$ is bounded for "good" $\theta$, observe that they are the absolute values of the real and imaginary part of

$$
\sum_{1}^{N} e^{i n \theta}
$$

so they are less than or equal to

$$
\left|\sum_{1}^{N} e^{i n \theta}\right|=\left|\frac{e^{i \theta}-e^{i(N+1) \theta}}{1-e^{i \theta}}\right| \leq \frac{\left|e^{i \theta}\right|+\left|e^{i(N+1) \theta}\right|}{\left|1-e^{i \theta}\right|}=\frac{2}{\left|1-e^{i \theta}\right|}
$$

Finally, please note textbook Ch3 Theorem 2.1.
Ex15. (1 marks) Let $w=e^{i x}$. We assume $w \neq 1$. Then $D_{k}(x)=\sum_{\ell=-k}^{k} w^{\ell}=\frac{w^{-k}\left(1-w^{2 k+1}\right)}{1-w}=$ $\frac{w^{-k}}{1-w}-\frac{w^{k+1}}{1-w}$. Hence

$$
\begin{aligned}
N F_{N}(x) & =\sum_{k=-(N-1)}^{0} \frac{w^{k}}{1-w}-\sum_{k=0}^{N-1} \frac{w^{k+1}}{1-w}=\frac{w^{-(N-1)}\left(1-w^{N}\right)}{(1-w)^{2}}-\frac{w\left(1-w^{N}\right)}{(1-w)^{2}} \\
& =\frac{w\left(w^{-N}-2+w^{N}\right)}{(1-w)^{2}}=\frac{\left(w^{N / 2}-w^{-N / 2}\right)^{2}}{\left[w^{-1 / 2}(1-w)\right]^{2}}=\frac{\left(w^{N / 2}-w^{-N / 2}\right)^{2}}{\left(w^{-1 / 2}-w^{1 / 2}\right)^{2}}=\frac{\sin ^{2}(N x / 2)}{\sin ^{2}(x / 2)} .
\end{aligned}
$$

The result follows.

[^2]Ex17. (a). (3 marks) For each fixed $r, P_{r}(\cdot)$ is an even function. Therefore

$$
\frac{1}{2 \pi} \int_{-\pi}^{0} P_{r}(\xi) d \xi=\frac{1}{2 \pi} \int_{0}^{\pi} P_{r}(\xi) d \xi
$$

Since their sum is 1 , they equal $1 / 2$. We then decompose $A_{r} f(\theta)$ as

$$
A_{r} f(\theta)=\frac{1}{2 \pi} \int_{-\pi}^{0} f(\theta-\xi) P_{r}(\xi) d \xi+\frac{1}{2 \pi} \int_{0}^{\pi} f(\theta-\xi) P_{r}(\xi) d \xi
$$

For any $\varepsilon>0$, there exists $\delta>0$ such that for all $0<\xi<\delta$, we have $\left|f\left(\theta^{-}\right)-f(\theta-\xi)\right|<\varepsilon$. For this $\delta$, there exists $r_{0}<1$ such that for all $r_{0} \leq r<1$, we have

$$
\int_{\delta}^{\pi} P_{r}(\xi) d \xi<\varepsilon
$$

With $P_{r}(\cdot)$ non-negative and $f$ bounded on $\mathbb{T}$ (since $f$ is Riemann integrable), we see that

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \int_{0}^{\pi} f(\theta-\xi) P_{r}(\xi) d \xi-\frac{f\left(\theta^{-}\right)}{2}\right|= & \left|\frac{1}{2 \pi} \int_{0}^{\pi}\left[f(\theta-\xi)-f\left(\theta^{-}\right)\right] P_{r}(\xi) d \xi\right| \\
\leq & \frac{1}{2 \pi} \int_{0}^{\delta}\left|f(\theta-\xi)-f\left(\theta^{-}\right)\right| P_{r}(\xi) d \xi \\
& +\frac{1}{2 \pi} \int_{\delta}^{\pi}\left|f(\theta-\xi)-f\left(\theta^{-}\right)\right| P_{r}(\xi) d \xi \\
& \leq \frac{1}{2 \pi} \int_{0}^{\delta} \varepsilon P_{r}(\xi) d \xi+\frac{2 \sup f}{2 \pi} \int_{\delta}^{\pi} P_{r}(\xi) d \xi \\
& <\varepsilon+\frac{\sup f}{\pi} \varepsilon
\end{aligned}
$$

This shows

$$
\lim _{r \uparrow 1} \frac{1}{2 \pi} \int_{0}^{\pi} f(\theta-\xi) P_{r}(\xi) d \xi=\frac{f\left(\theta^{-}\right)}{2}
$$

Similarly,

$$
\lim _{r \uparrow 1} \frac{1}{2 \pi} \int_{-\pi}^{0} f(\theta-\xi) P_{r}(\xi) d \xi=\frac{f\left(\theta^{+}\right)}{2}
$$

The result follows.

## Alternative

[^3]Since $f(\theta-x)+f(\theta+x)$ and $\frac{1-r^{2}}{1+r^{2}-2 r \cos x}$ are even functions,

$$
\begin{aligned}
A_{r}(f)(\theta) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos x} f(\theta-x) \mathrm{d} x \\
& =\frac{1}{2 \pi}\left(\int_{0}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos x} f(\theta+x) \mathrm{d} x+\int_{0}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos x} f(\theta-x) \mathrm{d} x\right) \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos x}(f(\theta-x)+f(\theta+x)) \mathrm{d} x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos x} \frac{f(\theta-x)+f(\theta+x)}{2} \mathrm{~d} x \text { for } 0 \leq r<1 .
\end{aligned}
$$

Let $g(t)=\left\{\begin{array}{ll}\frac{f\left(\theta^{+}\right)+f\left(\theta^{-}\right)}{2} & \text { if } t=\theta \\ \frac{f(t)+f(2 \theta-t)}{2} & \text { otherwise }\end{array}\right.$. Then $\lim _{\substack{h \rightarrow 0 \\ h>0}} g(\theta+h)=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(\theta+h)+f(\theta-h)}{2}=\frac{f\left(\theta^{+}\right)+f\left(\theta^{-}\right)}{2}=g(\theta)$. Similarly $\lim _{\substack{h \rightarrow 0 \\ h>0}} g(\theta-h)=g(\theta)$. So $g$ is continuous at $\theta$. Therefore $\lim _{r \rightarrow 1} A_{r}(f)(\theta)=\lim _{r \rightarrow 1} A_{r}(g)(\theta)=g(\theta)=\frac{f\left(\theta^{+}\right)+f\left(\theta^{-}\right)}{2}$.
(b) Since the Fejér kernel is also a good kernel and it is an even function, we can prove the result by applying the same procedure as in (a). We therefore omit the detail.


[^0]:    *This solution is adapted from the work by former TAs.
    ${ }^{\dagger}$ Let $\left\{i_{1}, i_{2}, \ldots\right\}$ be precisely those positive integers such that $\left|z_{i_{k}}-1\right| \geq c$. Then $2 k \geq i_{k}$ by induction on $k$ : if $i_{k+1} \neq i_{k}+1$, then $i_{k+1}=i_{k}+2 \leq 2 k+2=2(k+1)$; else $i_{k+1}=i_{k}+1 \leq 2 k+1 \leq 2(k+1)$.

[^1]:    $\ddagger \mathrm{A}$ student provides this solution.

[^2]:    §A student provides this idea.

[^3]:    "A student provides this solution.

