TA’s solutionH to 3093 assignment 3

Ch2, Ex9. (6 marks)

9(a) (p.61) It is easy to see f(U] == Ifn#0,
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(b) We want to show that if b — a # 0, 27, then
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This can be done by one of the following arguments:
Approach 1
Let ¢g := b — a. We have
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Observe that the sequence {z,} = {ei”‘z’o}:}:l represents successive rotations on the unit

circle T in the complex plane by angle ¢ (2,41 = 2, - €/%°). We want to show that for many
values of n, |e"?0 — 1| is not small. Since 0 < ¢ < 27 , we claim that if z, is close to 1, then
after rotating it by angle ¢y, its new position (i.e. z,,1) is no longer close to 1. It should be
clear by drawing a picture. To be precise,
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2(]6‘0 + 1)7T — (7’L + 1)¢0 = (27T — ¢0) + (2I€D7T — TL¢0) > (27T — ¢0) — B Z 0.

As a result, for ¢ :=|e"® — 1| > 0, we have |z, — 1| < ¢ = |z,41 — 1] > ¢, whence
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*This solution is adapted from the work by former TAs.
"Let {i1,ia,...} be precisely those positive integers such that |z;, — 1| > ¢. Then 2k > 4 by induction on k: if
Tl ik + 1, then i1 =i +2 <2k +2=2(k+1);else ip41 =i + 1 <2k +1 < 2(k+1).



Approach 2

9(b). The Fourier series does not converge absolutely means that we need to show
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Note that from the assumption, fy < 7. Hence, we can find some ¢ > 0 so that
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This means for all integers k > 1, the length of the intervals (25D ~c mlktl)-sin =
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is equal to ﬁzz,.# = 1. This implies there exists some integer ni such that
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This means that ng < W(H”BDS'“ £ < "r“;;rl) and |sinngfy| > c. Hence,
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As the series Y 1, k—}rl = 0o, the proof is completed.
Remark. Drawing a graph of y = | sinx| helps visualizing the argument.

Approach 3

This approach combines the hint of the question with the observation in approach 1. The key
point is that if [sin ndy| = 0, then |cosnby| = 1, so [sin(n + 1)6y| = |sin nby cos Oy + cos nby sin by| >
|cos nfy sin Oy| — |sinnby cos | ~ |sin Gy|. We omit the detail.

Approach 4ﬂ

Observe that

Z sin nb, S Z sin® né, B Z 1 — cos 2nby,
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cos 2nf,

By Dirichlet’s test 3 -,

follows.

1
converges (see part (c)), while 22— = 00. The result
n

TA student provides this solution.



9(c). Note that
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The Fourier series of f becomes

bg:rﬂ + HZ; ?;ln{s.ll'l n(x —a) — sinn(z — b)).

By the Dirichlet’s Test (Ex 7b (p.60)), Zn -1
for all x. Hence the Fourier series converges at ev (‘r} point .
Ifa=—7and b = 7, then f(n) = 0 for n # 0, then the Fourier series of f is

hg,ra =1is vqual to f itself.
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Let’s make some remarks. Firstly, note that we deal with a symmetric sum rather than an
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asymmetric one. Consider for example a = —m, b =0, x = m. Then ) S u
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converges, but > = Y — diverges if it is an asymmetric sum. Secondlyﬂ, to show
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Finally, please note textbook Ch3 Theorem 2.1.
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The result follows.

SA student provides this idea.



Ex17. (a). (3 marks) For each fixed r, P,(-) is an even function. Therefore
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Since their sum is 1, they equal 1/2. We then decompose A, f(0) as

- % /_7r F(0 = )P.(&)deE + % /OW f(0 =8P (&)dE.

For any € > 0, there exists § > 0 such that for all 0 < £ < 6, we have [f(07) — f(0 — )| < e.
For this ¢, there exists rqg < 1 such that for all 7o < r < 1, we have

/6 Pt < <.

With P.(-) non-negative and f bounded on T (since f is Riemann integrable), we see that
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The result follows.
Altemativeﬁ

YA student provides this solution.



Sinee f(# —xz)+ f(# + x) and m are even functions,
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Let g(t) = {f(t]_'_g%._ﬂ othererise” Then ’;l‘:?l,%gw +h) = %l_i%} 5 = 5 = g(#). Similarly

lim g(# — h) = g(#). So g is continuous at #. Therefore lim A, (f)(#) = im A, (g)(#) = g(F) = w.
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(b) Since the Fejér kernel is also a good kernel and it is an even function, we can prove the result
by applying the same procedure as in (a). We therefore omit the detail.




