Ch2, Ex4. (4 marks)
(a) Note that $f(\theta)= \begin{cases}\theta(\pi+\theta) & \text { if } \theta \in[-\pi, 0] \\ \theta(\pi-\theta) & \text { if } \theta \in[0, \pi]\end{cases}$

(b) We have $\widehat{f}(0)=0$. For $n \neq 0$, we calculate the Fourier coefficients as follows:

$$
\begin{array}{rlr}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta & \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta)(-i \sin n \theta) d \theta & \\
& (\because f(\theta) \cos n \theta \text { is odd in }[-\pi, \pi]) \\
& =\frac{-i}{\pi} \int_{0}^{\pi} \theta(\pi-\theta) \sin n \theta d \theta . & \\
(\because f(\theta) \sin n \theta \text { is even in }[-\pi, \pi])
\end{array}
$$

Using integration by parts and $\cos n \pi=(-1)^{n}$, we have

$$
\begin{gathered}
\int_{0}^{\pi} \theta \sin n \theta d \theta=\frac{-1}{n}\left[\pi(-1)^{n}-\int_{0}^{\pi} \cos n \theta d \theta\right]=\frac{-\pi(-1)^{n}}{n} \\
\int_{0}^{\pi} \theta^{2} \sin n \theta d \theta=\frac{-1}{n}\left[\pi^{2}(-1)^{n}-2 \int_{0}^{\pi} \theta \cos n \theta d \theta\right]=\frac{-\pi^{2}(-1)^{n}}{n}+\frac{2}{n^{2}}\left[-\int_{0}^{\pi} \sin n \theta d \theta\right] \\
=\frac{-\pi^{2}(-1)^{n}}{n}+\frac{2}{n^{3}}\left[(-1)^{n}-1\right] .
\end{gathered}
$$

As a result

$$
\widehat{f}(n)=\frac{-i}{\pi} \cdot \frac{-2}{n^{3}}\left[(-1)^{n}-1\right]= \begin{cases}0 & \text { if } n \text { is even } \\ \frac{-4 i}{\pi n^{3}} & \text { if } n \text { is odd }\end{cases}
$$

[^0]This shows the Fourier series of f is given by

$$
\sum_{\substack{n \in \mathbb{Z} \\ n \text { odd }}} \frac{-4 i}{\pi n^{3}} e^{i n \theta}=\sum_{\substack{n \in \mathbb{Z} \\ n \text { odd }}} \frac{-4 i}{\pi n^{3}} i \sin n \theta=\sum_{\substack{n \geq 1 \\ n \text { odd }}} \frac{8}{\pi n^{3}} \sin n \theta .
$$

Since $\sum|\widehat{f}(n)| \leq C \sum \frac{1}{n^{3}}<\infty$ for some constant $C>0$, the Fourier series is equal to $f^{母}$. Another approach for the integration:
We have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta & =\frac{1}{2 \pi} \int_{0}^{\pi} \theta(\pi-\theta) e^{-i n \theta} d \theta+\frac{1}{2 \pi} \int_{-\pi}^{0} \theta(\pi+\theta) e^{-i n \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} \theta(\pi-\theta) e^{-i n \theta} d \theta+\frac{1}{2 \pi} \int_{0}^{\pi}(t-\pi)(\pi+(t-\pi)) e^{-i n(t-\pi)} d t \\
& =\frac{\left[1-e^{i n \pi}\right]}{2 \pi} \int_{0}^{\pi} \theta(\pi-\theta) e^{-i n \theta} d \theta \\
& =\frac{\left[1-e^{i n \pi}\right]}{2 \pi} \int_{-\pi / 2}^{\pi / 2}\left(\frac{\pi}{2}-v\right)\left(\frac{\pi}{2}+v\right) e^{-i n\left(\frac{\pi}{2}-v\right)} d v \\
& =\frac{-i \sin \frac{n \pi}{2}}{\pi} \int_{-\pi / 2}^{\pi / 2}\left(\frac{\pi^{2}}{4}-v^{2}\right) e^{i n v} d v
\end{aligned}
$$

By thinking of integration by parts, an anti-derivative of the integrand above is of the form $\left(A v^{2}+B v+C\right) e^{i n v}$ for some $A, B, C \in \mathbb{R}$. Hence the above is

$$
\begin{aligned}
& =\frac{-i \sin \frac{n \pi}{2}}{\pi}\left[\left(A v^{2}+B v+C\right) e^{i n v}\right]_{v=-\pi / 2}^{v=\pi / 2} \\
& =\frac{-i \sin \frac{n \pi}{2}}{\pi}\left[\left(A \frac{\pi^{2}}{4}+C\right) 2 i \sin \frac{n \pi}{2}+B \frac{\pi}{2} 2 \cos \frac{n \pi}{2}\right] \\
& =\frac{-i \sin \frac{n \pi}{2}}{\pi}\left[\left(A \frac{\pi^{2}}{4}+C\right) 2 i \sin \frac{n \pi}{2}\right] \quad\left(\because 2 \sin \frac{n \pi}{2} \cos \frac{n \pi}{2}=\sin n \pi=0\right) \\
& =\frac{2 \sin ^{2} \frac{n \pi}{2}}{\pi}\left[A \frac{\pi^{2}}{4}+C\right]
\end{aligned}
$$

By the definition of anti-derivative, we have

$$
i n\left(A v^{2}+B v+C\right) e^{i n v}+(2 A v+B) e^{i n v}=\left(\frac{\pi^{2}}{4}-v^{2}\right) e^{i n v}
$$

so by comparing the coefficients

$$
\left\{\begin{array}{l}
i n A=-1 \\
\text { in } B+2 A=0 \\
i n C+B=\frac{\pi^{2}}{4}
\end{array}\right.
$$

whence

$$
A=\frac{-1}{i n}, \quad i n C+\left(\frac{-2}{n^{2}}\right)=\frac{\pi^{2}}{4} \Rightarrow C=\frac{\pi^{2}}{4 i n}+\frac{2}{i n^{3}}
$$

and therefore $\left[A \frac{\pi^{2}}{4}+C\right]=\frac{2}{i n^{3}}$. The result follows.

[^1]Ex6. (4 marks)
(a)

(b) If $n=0$, then $\widehat{f}(0)=\frac{1}{\pi} \int_{0}^{\pi} \theta d \theta=\frac{\pi}{2}$. Else if $n \neq 0$, then using f is even we have

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\theta| \cos n \theta d \theta \\
& =\frac{1}{\pi} \int_{0}^{\pi} \theta \cos n \theta d \theta=\frac{1}{n \pi}\left(-\int_{0}^{\pi} \sin n \theta d \theta\right) \\
& =\frac{(-1)^{n}-1}{n^{2} \pi}
\end{aligned}
$$

(c) By the result of part b,

$$
\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{i n \theta}=\frac{\pi}{2}+\sum_{\substack{n \in \mathbb{Z} \\ n \text { odd }}} \frac{-2}{n^{2} \pi} e^{i n \theta}=\frac{\pi}{2}+\sum_{\substack{n \geq 1 \\ n \text { odd }}} \frac{-4}{n^{2} \pi} \cos n \theta
$$

6(d). As $\sum|\widehat{f}(n)| \leq C \sum_{n} \frac{1}{n^{2}}<\infty$, for some constant $C>0$, the Fourier series is equal to f (Corollary 2.3 of the book).

$$
f(\theta)=\frac{\pi}{2}+\sum_{n \geq 1, n=o d d} \frac{-4}{\pi n^{2}} \cos n \theta
$$

Taking $\theta=0$, we have

$$
0=f(0)=\frac{\pi}{2}-\sum_{n \geq 1, n=o d d} \frac{4}{\pi n^{2}}
$$

This implies that

$$
\sum_{n \geq 1, n=o d d} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}
$$

Finally,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\sum_{n \geq 1, n=\text { odd }} \frac{1}{n^{2}}+\sum_{n \geq 1, n=\text { even }} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}+\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

This implies

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Ex10. (2 marks)
Since f is 2π-periodic, $f^{(i)}$ is 2π-periodic too for any $1 \leq i \leq k$. Consequently, $f^{(i)}(-\pi) e^{i n \pi}=$ $f^{(i)}(\pi) e^{-i n \pi}$. Therefore, by successive integration by parts (for $n \neq 0$),

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta \\
& =\frac{1}{i n} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(\theta) e^{-i n \theta} d \theta \\
& =\frac{1}{(i n)^{2}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime \prime}(\theta) e^{-i n \theta} d \theta \\
& =\cdots \\
& =\frac{1}{(i n)^{k}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{(k)}(\theta) e^{-i n \theta} d \theta
\end{aligned}
$$

As $f \in C^{k}$, so by the definition of C^{k} we have $f^{(k)}$ is continuous on \mathbb{T}. This means there exists $M>0$ such that $\left|f^{(k)}(\theta)\right|<M$ for all θ. Hence

$$
|\widehat{f}(n)| \leq \frac{1}{|n|^{k}} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f^{(k)}(\theta)\right| d \theta \leq \frac{M}{|n|^{k}}
$$

${ }^{\ddagger}$ For example, $f^{\prime}(x+2 \pi)=\lim _{h \rightarrow 0} \frac{f(x+2 \pi+h)-f(x+2 \pi)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)$.

[^0]: *This solution is adapted from the work by former TAs.

[^1]: ${ }^{\dagger}$ It is textbook Ch2 Corollary 2.3

