TA's solution to 3093 assignment 1

1. (4 marks) f is periodic with period 2π because $f(x+2 \pi)=e^{i n x} e^{i 2 \pi}=e^{i n x}=f(x)$.

If $n=0, \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d x=1$. If $n \neq 0$, then $e^{-i n \pi}=e^{-i n \pi+2 i n \pi}=e^{i n \pi}$ and hence we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} d x=\frac{1}{2 \pi i n}\left[e^{i n x}\right]_{-\pi}^{\pi}=\frac{e^{i n \pi}-e^{-i n \pi}}{2 \pi i n}=0
$$

For the second part, we note that $\cos x=\frac{e^{i x}+e^{-i x}}{2}$ and $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$, so $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos n x \cdot \cos m x d x=\frac{1}{4 \pi} \int_{-\pi}^{\pi} e^{i(n+m) x}+e^{-i(n+m) x}+e^{i(n-m) x}+e^{-i(n-m) x} d x$
As $n, m \geq 1, n+m \neq 0$. By the above results,

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} \cos n x \cdot \cos m x d x= \begin{cases}0, & \text { if } n \neq m \\ 1, & \text { if } n=m\end{cases}
$$

Similarly,

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-\pi}^{\pi} \sin n x \cdot \sin m x d x=\frac{-1}{4 \pi} \int_{-\pi}^{\pi} e^{i(n+m) x}+e^{-i(n+m) x}-e^{i(n-m) x}-e^{-i(n-m) x} d x \\
&= \begin{cases}0, & \text { if } n \neq m \\
1, & \text { if } n=m\end{cases} \\
& \begin{aligned}
\frac{1}{\pi} \int_{-\pi}^{\pi} \sin n x \cdot \cos m x d x & =\frac{1}{4 \pi i} \int_{-\pi}^{\pi} e^{i(n+m) x}-e^{-i(n+m) x}+e^{i(n-m) x}-e^{-i(n-m) x} d x \\
& =0
\end{aligned}
\end{aligned}
$$

2(a). (3 marks) ${ }^{\boldsymbol{\Delta}}$ In polar coordinates, $x=r \cos \theta$ and $y=r \sin \theta$. We have $U(r, \theta)=u(r \cos \theta, r \sin \theta)$, whence

$$
\begin{aligned}
U_{r} & =u_{x} x_{r}+u_{y} y_{r}=u_{x} \cos \theta+u_{y} \sin \theta, \\
U_{r r} & =\frac{\partial u_{x}}{\partial r} \cos \theta+\frac{\partial u_{y}}{\partial r} \sin \theta \\
& =\left(u_{x x} x_{r}+u_{x y} y_{r}\right) \cos \theta+\left(u_{y x} x_{r}+u_{y y} y_{r}\right) \sin \theta \\
& =u_{x x} \cos ^{2} \theta+2 u_{x y} \sin \theta \cos \theta+u_{y y} \sin ^{2} \theta, \\
U_{\theta} & =u_{x} x_{\theta}+u_{y} y_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta, \\
U_{\theta \theta} & =-\left(u_{x x} x_{\theta}+u_{x y} y_{\theta}\right) r \sin \theta-u_{x} r \cos \theta+\left(u_{y x} x_{\theta}+u_{y y} y_{\theta}\right) r \cos \theta-u_{y} r \sin \theta \\
& =u_{x x} r^{2} \sin ^{2} \theta-2 u_{x y} r^{2} \sin \theta \cos \theta-u_{x} r \cos \theta+u_{y y} r^{2} \cos ^{2} \theta-u_{y} r \sin \theta
\end{aligned}
$$

Hence, combining all the above formulas, we have $U_{r r}+\frac{1}{r} U_{r}+\frac{1}{r^{2}} U_{\theta \theta}=u_{x x}+u_{y y}=0$.

[^0]2(b). (3 marks) $)^{\text {国 }}$ Let $U(r, \theta)=F(r) G(\theta)$ and put it into the polar Laplace equation. We have

$$
\left(F^{\prime \prime}+\frac{1}{r} F^{\prime}\right) G+\frac{1}{r^{2}} F G^{\prime \prime}=0,
$$

whence

$$
\begin{equation*}
\frac{r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)}{F(r)}=-\frac{G^{\prime \prime}(\theta)}{G(\theta)} \tag{1}
\end{equation*}
$$

The left hand side of $(\mathbb{1})$ is a function of r while the right hand side of $(\mathbb{1})$ is a function of θ, so the expression must be a constant α. Hence, we obtain $G^{\prime \prime}(\theta)+\alpha G(\theta)=0$. From elementary ODE, We have three cases

$$
\begin{cases}G(\theta)=A_{\alpha} \cos (\sqrt{\alpha} \theta)+B_{\alpha} \sin (\sqrt{\alpha} \theta) & (\text { if } \alpha>0) \\ G(\theta)=A_{\alpha} \theta+B_{\alpha} & (\text { if } \alpha=0) \\ G(\theta)=A_{\alpha} \cosh (\sqrt{-\alpha} \theta)+B_{\alpha} \sinh (\sqrt{-\alpha} \theta) & (\text { if } \alpha<0)\end{cases}
$$

Note that G must be 2π periodic, so $\alpha=n^{2}$, where $n=0,1,2, \ldots$.
(i) If $n=0$, then $G(\theta)=B_{0}$. We have from (1)

$$
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)=0
$$

Solving it using separation of variables, $F(r)=C \ln r+D$. However, $\ln r$ is unbounded when r goes to zero but the solution is bounded in the origin, hence we have $C=0$ and $F(r)=D$. The solution is of the desired form.
(ii) If $n>0$, then $\alpha=n^{2}$ and $G(\theta)=A_{n} \cos (n \theta)+B_{n} \sin (n \theta)$. Putting back to (11), we have

$$
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)-n^{2} F(r)=0
$$

This ODE is of 2 nd order and linear, so the solution space is of dimension 2. We can check that r^{n} and r^{-n} are linearly independent solutions to it, so F is given by

$$
F(r)=C_{n} r^{n}+D_{n} r^{-n}
$$

Since the solution is bounded in the origin, we have $D_{n}=0$ and $F(r)=C_{n} r^{n}$. Hence, the solution is given by

$$
U(r, \theta)=F(r) G(\theta)=r^{n}\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) .
$$

[^1]
[^0]: *This solution is adapted from the work by former TAs.
 ${ }^{\dagger}$ Please refer to textbook Ch. 1 Sec. 2 p.20-22 for more information about this question.

[^1]: ${ }^{\ddagger}$ This part is largely based on the work by former TAs as I am not knowledgeable about differential equations to be honest.

