Math 3030 Algebra I Review of basic ring theory

1 Rings

Definition 1.1. A ring $(R,+, \cdot)$ is a set R together with two binary operations: addition and multiplication $+, \cdot: R \times R \rightarrow R$ such that

1. $(R,+)$ is an abelian group;
2. (a) \cdot is associative; and
(b) there exists a multiplicative identity in R, i.e. an element $1 \in R$ such that $a 1=1 a=a$ for any $a \in R$.
3. - is distributive over + , i.e.

$$
a(b+c)=a b+a c \text { and }(a+b) c=a c+b c
$$

for any $a, b, c \in R$.
Definition 1.2. - We say that a ring R is commutative if $a b=b a$ for any $a, b \in R$.

- A triple $(R,+, \cdot)$ satisfying all the above conditions except $2(b)$ is called a rng or a ring without identity.

Here are some examples of rings:

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (equipped with the usual addition and multiplication) are all commutative rings.
2. Let R be any commutative ring. Then the set of polynomials $R[x]$ with coefficients in R is also a commutative ring. Examples are $\mathbb{Z}[x], \mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$.
3. For an integer $n \geq 2, n \mathbb{Z}$ is a commutative rng.
4. The only ring in which $1=0$ is $R=\{0\}$, called the zero ring. Any ring with $1 \neq 0$ is called a nonzero ring.
5. For any nonzero integer n, \mathbb{Z}_{n} is a finite commutative ring.
6. Let R be any commutative ring. Then for any integer $n \geq 2$, the set $M_{n \times n}(R)$ of $n \times n$ matrices with entries in R is a noncommutative ring.

2 Special classes of rings

Definition 2.1. Let R be a ring. If $a, b \in R$ are two nonzero elements of R such that $a b=0$, then we call them 0-divisors. (More precisely, a is called a left 0-divisor while b is called a right 0-divisor.)

Definition 2.2. An integral domain is a nonzero commutative ring which contains no 0-divisors.
Proposition 2.3. A nonzero commutative ring R is an integral domain if and only if the cancellation law hold for multiplication, i.e. whenever $c a=c b$ and $c \neq 0$, we have $a=b$.

Examples:

1. The finite ring \mathbb{Z}_{n} is an integral domain if and only if n is a prime.
2. If D is an integral domain, then the polynomial ring $D[x]$ is also an integral domain.

Definition 2.4. Let R be a nonzero ring. A nonzero element $u \in R$ is called a unit if it has a multiplicative inverse in R, i.e. there exists $u^{-1} \in R$ such that $u u^{-1}=u^{-1} u=1$.

Definition 2.5. A field is a nonzero commutative ring in which every nonzero element is a unit.
It is not hard to see that any field is an integral domain. Conversely, we have the following
Proposition 2.6. Any finite integral domain is a field.
Examples:

1. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
2. By the above proposition, \mathbb{Z}_{p} is a finite field for any prime p.
3. $\mathbb{Q}[\sqrt{2}]:=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a field.

Definition 2.7. Let D be an integral domain. If there exists a positive integer n such that na $=0$ for any $a \in D$, then D is said to be of finite characteristic, and the smallest such positive integer is called the characteristic of D, denoted by char (D). If no such integer exists, then we say D is of characteristic 0 , written as $\operatorname{char}(D)=0$.

Proposition 2.8. If $n 1 \neq 0$ for any positive integer n, then D is of characteristic 0 . Otherwise, $\operatorname{char}(D)=$ $\min \left\{n \in \mathbb{Z}_{>0}: n 1=0\right\}$.

Proposition 2.9. The characteristic of an integral domain is either 0 or a prime p.
Examples:

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are of characteristic 0 .
2. \mathbb{Z}_{p} is of characteristic p.

Given an integral domain D, the field of quotients (or fraction field) of D, denoted by $\operatorname{Frac}(\mathrm{D})$, is the quotient of the product $D \times(D \backslash\{0\})$ by the equivalence relation:

$$
(a, b) \sim(c, d) \text { if and only if } a d=b c
$$

Proposition 2.10. $\operatorname{Frac}(D)$ is a field under the addition and multiplication inherited from D, with additive identity $[(0,1)]$, multiplicative identity $[(1,1)]$, and the inverse of a nonzero element $[(a, b)]$ given by $[(b, a)]$.

Furthermore, there is a natural embedding $j: D \hookrightarrow \operatorname{Frac}(D)$ by $a \mapsto[(a, 1)]$, which is universal among all embeddings from D to a field, i.e. for any embedding $\iota: D \hookrightarrow L$ from D into a field L, there exists an embedding $i: \operatorname{Frac}(D) \hookrightarrow L$ such that $\iota=i \circ j$.

Examples:

1. $\operatorname{Frac}(\mathbb{Z})=\mathbb{Q}$.
2. Let F be a field. Then $\operatorname{Frac}(F[x])$ is called the field of rational functions over F, denoted by $F(x)$. Formally, we can write

$$
F(x)=\left\{\frac{f(x)}{g(x)}: f(x), g(x) \in F[x], g(x) \neq 0\right\}
$$

3 Ring homomorphisms; subrings and ideals

Definition 3.1. Let R and R^{\prime} be rings. A map $\phi: R \rightarrow R^{\prime}$ called a ring homomorphism (or simply homomorphism) if the following conditions are satisfied:

1. $\phi\left(1_{R}\right)=1_{R^{\prime}}$;
2. $\phi(a+b)=\phi(a)+\phi(b)$, for all $a, b \in R$;
3. $\phi(a b)=\phi(a) \phi(b)$, for all $a, b \in R$.

If ϕ is furthermore bijective, then it is called an isomorphism. We say that R is isomorphic to R^{\prime}, denoted by $R \cong R^{\prime}$, if there exists an isomorphism ϕ from R to R^{\prime}.
Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.
Examples of ring homomorphisms:

1. For any positive integer n, the map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ defined by mapping k to its reminder when divided by n is a surjective ring homomorphism.
2. Let R be the set of all functions from \mathbb{R} to \mathbb{R}. Fix $a \in \mathbb{R}$. Then the evaluation map $\phi_{a}: R \rightarrow \mathbb{R}$ defined by $f \mapsto f(a)$ is a ring homomorphism.

Proposition 3.3. A subring of a ring $(R,+, \cdot)$ is a subset $S \subset R$ containing 1_{R} and closed under + and - which forms a ring under the inherited operations.

Proposition 3.4. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then

- $\phi(0)=0^{\prime}$, where 0 and 0^{\prime} are the additive identities in R and R^{\prime} respectively.
- For any $a \in R, \phi(-a)=-\phi(a)$.
- For any subring $S \subset R, \phi(S)$ is a subring of R^{\prime}.
- For any subring $S^{\prime} \subset R^{\prime}, \phi^{-1}\left(S^{\prime}\right)$ is a subring of R.

Remark 3.5. Similar to groups, we can define the category Ring of rings. A free object on n generators in the category Comm Ring of commutative rings is given by the polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. This places the polynomial ring on the same footing as the free group and finite dimensional vector spaces:

$$
\begin{aligned}
& F_{\operatorname{Grp}\left(a_{1}, \ldots, a_{n}\right)}=\text { free group on } n \text { generators }, \\
& F_{\mathrm{Ab}}\left(a_{1}, \ldots, a_{n}\right)=\mathbb{Z}^{n}, \\
& F_{\text {Vect }_{F}}\left(a_{1}, \ldots, a_{n}\right)=F^{n}, \\
& F_{\text {Comm Ring }}\left(a_{1}, \ldots, a_{n}\right)=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] .
\end{aligned}
$$

Definition 3.6. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. The additive subgroup

$$
\operatorname{ker} \phi:=\phi^{-1}\left(0^{\prime}\right)=\left\{a \in R: \phi(a)=0^{\prime}\right\}
$$

is called the kernel of ϕ.
Proposition 3.7. A ring homomorphism $\phi: R \rightarrow R^{\prime}$ is injective if and only if $\operatorname{ker} \phi=\{0\}$.
Definition 3.8. An additive subgroup I of a ring R such that $a I \subset I$ and $I b \subset I$ for any $a, b \in R$ is called an ideal of R.

Proposition 3.9. For any homomorphism $\phi: R \rightarrow R^{\prime}$, $\operatorname{ker} \phi$ is an ideal of R.
Theorem 3.10. Let $I \subset R$ be an additive subgroup. Then the multiplication

$$
(a+I)(b+I)=(a b)+I
$$

on additive cosets is well-defined if and only if I is an ideal.
Corollary 3.11. Let $I \subset R$ be an ideal. Then the additive cosets of I in R form a ring, called the quotient ring of R by I and denoted by R / I, under the operations

$$
\begin{aligned}
(a+I)+(b+I) & =(a+b)+I \\
(a+I)(b+I) & =(a b)+I
\end{aligned}
$$

Proposition 3.12. Let $I \subset R$ be an ideal. Then the map $\pi: R \rightarrow R / I$ defined by $\pi(a)=a+I$ is a surjective ring homomorphism with $\operatorname{ker} \pi=I$; this map is called the projection map or canonical map.

Hence "ideal" and "kernel of a ring homomorphism" are equivalent concepts.
Theorem 3.13. (First Isomorphism Theorem) Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism. Let $I=\operatorname{ker} \varphi$. Then the map $\bar{\varphi}: R / I \rightarrow \varphi(R)$ defined by

$$
\bar{\varphi}(a+I)=\varphi(a)
$$

is an isomorphism such that $\varphi=\bar{\varphi} \circ \pi$.
Here are some examples:

1. $n \mathbb{Z} \subset \mathbb{Z}$ is an ideal, and $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$ as rings.
2. Let R be the set of all functions from \mathbb{R} to \mathbb{R}. Fix $a \in \mathbb{R}$. Then $I_{a}:=\{f \in R: f(a)=0\}$ is an ideal of R since it is the kernel of the evaluation map ϕ_{a}, and $R / I_{a} \cong \mathbb{R}$ as rings. On the other hand, the subset S consisting of all constant functions is a subring but not an ideal.
3. For any ring R, both $\{0\}$ and R are ideals of R. An ideal $I \varsubsetneqq R$ is called proper and ideal $\{0\} \varsubsetneqq I \subset R$ is called nontrivial.
4. Let R be a commutative ring. Let $a \in R$. Then the set of all multiples of a

$$
\langle a\rangle:=\{r a: r \in R\}
$$

is an ideal, called the principal ideal generated by a. Note that $R=\langle 1\rangle$.
5. More generally, let $A \subset R$ be a nonempty subset of a commutative ring R. Then the set of all finite linear combinations of elements of A

$$
\langle A\rangle:=\left\{r_{1} a_{1}+\cdots+r_{k} a_{k}: k \in \mathbb{Z}_{>0}, r_{i} \in R, a_{i} \in A\right\}
$$

is an ideal, called the ideal generated by A.
Proposition 3.14. Let F be a field.

- If char $(F)=0$, then there exists an embedding $\mathbb{Q} \hookrightarrow F$.
- If $\operatorname{char}(F)=p$, then there exists an embedding $\mathbb{Z}_{p} \hookrightarrow F$.

Because of this, the fields $\mathbb{Q}, \mathbb{Z}_{p}$ (where p is a prime) are called prime fields.

4 Polynomial rings

Definition 4.1. Let R be a nonzero commutative ring. A polynomial $f(x)$ with coefficients in R is a formal sum

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

where $a_{i} \in R$ and $a_{i}=0$ for all but finitely many i 's. If $a_{i} \neq 0$ for some i, then the largest such integer is called the degree of $f(x)$. We denote by $R[x]$ the set of all polynomials with coefficients in R.

Proposition 4.2. $R[x]$ is a commutative ring under the usual addition and multiplication of polynomials. Proposition 4.3 (Division algorithm). Let F be a field. Let $f(x), g(x) \in F[x]$ be two nonzero polynomials. Then there exist unique $q(x), r(x) \in F[x]$ such that

$$
f(x)=q(x) g(x)+r(x)
$$

and either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
Corollary 4.4. An element $a \in F$ is a root (or zero) of $f(x)$ (i.e. $f(a)=0$) if and only if $f(x)$ is divisible by $x-a$.
Corollary 4.5. A nonzero polynomial $f(x) \in F[x]$ of positive degree n can have at most n roots in F.
Definition 4.6. An integral domain D is called a principal ideal domain (PID) if every ideal in D is principal.

An example of PID is given by \mathbb{Z}.
Proposition 4.7. For any field $F, F[x]$ is a PID.
Definition 4.8. A nonconstant polynomial $f(x) \in F[x]$ is said to be irreducible over F if it cannot be written as a product $g(x) h(x)$ where both $g(x)$ and $h(x)$ have degrees lower than that of $f(x)$. Otherwise, $f(x)$ is said to be reducible.

Examples:

1. $x^{2}+1$ is irreducible over \mathbb{R} but reducible over \mathbb{C}.
2. $f(x)=x^{3}+3 x+2 \in \mathbb{Z}_{5}[x]$ is irreducible over \mathbb{Z}_{5} since it has no roots in \mathbb{Z}_{5} (which is easy to check).
Lemma 4.9 (Gauss' lemma). If $f(x) \in \mathbb{Z}[x]$ can be factored as a product of two polynomials in $\mathbb{Q}[x]$, it can also be factored as a product of two polynomials in $\mathbb{Z}[x]$.
Theorem 4.10 (Eisenstein criterion). Let $p \in \mathbb{Z}$ be a prime. Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$. Suppose that $p \nmid a_{n}, p: a_{i}$ for all $i<n$ and $p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible over \mathbb{Q}.

Examples:

1. $5 x^{5}-9 x^{4}-3 x^{2}-12$ is irreducible over \mathbb{Q}.
2. For any prime p, the p-th cyclotomic polynomial

$$
\Phi_{p}(x):=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1
$$

is irreducible over \mathbb{Q}.
Theorem 4.11. Let F be a field. For any polynomial $f(x) \in F[x]$, the following statements are equivalent:

1. $F[x] /\langle f(x)\rangle$ is a field.
2. $F[x] /\langle f(x)\rangle$ is an integral domain.
3. $f(x)$ is irreducible over F.
