Math 3030 Algebra I Review of basic ring theory

1 Rings

Definition 1.1. A ring $(R, +, \cdot)$ is a set R together with two binary operations: addition and multiplication $+, \cdot : R \times R \rightarrow R$ such that

- *1.* (R, +) *is an abelian group;*
- 2. (a) \cdot is associative; and
 - (b) there exists a multiplicative identity in R, i.e. an element $1 \in R$ such that a1 = 1a = a for any $a \in R$.
- 3. \cdot is distributive over +, i.e.

$$a(b+c) = ab + ac$$
 and $(a+b)c = ac + bc$

for any $a, b, c \in R$.

Definition 1.2. • We say that a ring R is commutative if ab = ba for any $a, b \in R$.

• A triple $(R, +, \cdot)$ satisfying all the above conditions except 2(b) is called a rng or a ring without identity.

Here are some examples of rings:

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} (equipped with the usual addition and multiplication) are all commutative rings.
- 2. Let R be any commutative ring. Then the set of polynomials R[x] with coefficients in R is also a commutative ring. Examples are $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$.
- 3. For an integer $n \ge 2$, $n\mathbb{Z}$ is a commutative rng.
- 4. The only ring in which 1 = 0 is $R = \{0\}$, called the zero ring. Any ring with $1 \neq 0$ is called a nonzero ring.
- 5. For any nonzero integer n, \mathbb{Z}_n is a finite commutative ring.
- 6. Let R be any commutative ring. Then for any integer $n \ge 2$, the set $M_{n \times n}(R)$ of $n \times n$ matrices with entries in R is a noncommutative ring.

2 Special classes of rings

Definition 2.1. Let R be a ring. If $a, b \in R$ are two nonzero elements of R such that ab = 0, then we call them **0-divisors**. (More precisely, a is called a **left 0-divisor** while b is called a **right 0-divisor**.)

Definition 2.2. An integral domain is a nonzero commutative ring which contains no 0-divisors.

Proposition 2.3. A nonzero commutative ring R is an integral domain if and only if the cancellation law hold for multiplication, i.e. whenever ca = cb and $c \neq 0$, we have a = b.

Examples:

- 1. The finite ring \mathbb{Z}_n is an integral domain if and only if n is a prime.
- 2. If D is an integral domain, then the polynomial ring D[x] is also an integral domain.

Definition 2.4. Let R be a nonzero ring. A nonzero element $u \in R$ is called a **unit** if it has a multiplicative inverse in R, i.e. there exists $u^{-1} \in R$ such that $uu^{-1} = u^{-1}u = 1$.

Definition 2.5. A *field* is a nonzero commutative ring in which every nonzero element is a unit.

It is not hard to see that any field is an integral domain. Conversely, we have the following

Proposition 2.6. Any finite integral domain is a field.

Examples:

- 1. \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields.
- 2. By the above proposition, \mathbb{Z}_p is a finite field for any prime p.
- 3. $\mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a field.

Definition 2.7. Let D be an integral domain. If there exists a positive integer n such that na = 0 for any $a \in D$, then D is said to be of **finite characteristic**, and the smallest such positive integer is called the **characteristic** of D, denoted by char(D). If no such integer exists, then we say D is of **characteristic 0**, written as char(D) = 0.

Proposition 2.8. If $n1 \neq 0$ for any positive integer n, then D is of characteristic 0. Otherwise, $char(D) = \min\{n \in \mathbb{Z}_{>0} : n1 = 0\}$.

Proposition 2.9. The characteristic of an integral domain is either 0 or a prime p.

Examples:

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are of characteristic 0.
- 2. \mathbb{Z}_p is of characteristic p.

Given an integral domain D, the **field of quotients** (or **fraction field**) of D, denoted by Frac(D), is the quotient of the product $D \times (D \setminus \{0\})$ by the equivalence relation:

 $(a,b) \sim (c,d)$ if and only if ad = bc.

Proposition 2.10. *Frac(D) is a field under the addition and multiplication inherited from D, with additive identity* [(0,1)]*, multiplicative identity* [(1,1)]*, and the inverse of a nonzero element* [(a,b)] *given by* [(b,a)]*.*

Furthermore, there is a natural embedding $j : D \hookrightarrow Frac(D)$ by $a \mapsto [(a, 1)]$, which is universal among all embeddings from D to a field, i.e. for any embedding $\iota : D \hookrightarrow L$ from D into a field L, there exists an embedding $i : Frac(D) \hookrightarrow L$ such that $\iota = i \circ j$.

Examples:

- 1. Frac(\mathbb{Z}) = \mathbb{Q} .
- 2. Let F be a field. Then Frac(F[x]) is called the **field of rational functions** over F, denoted by F(x). Formally, we can write

$$F(x) = \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in F[x], \ g(x) \neq 0 \right\}.$$

3 Ring homomorphisms; subrings and ideals

Definition 3.1. Let R and R' be rings. A map $\phi : R \to R'$ called a **ring homomorphism** (or simply **homomorphism**) if the following conditions are satisfied:

- 1. $\phi(1_R) = 1_{R'};$
- 2. $\phi(a+b) = \phi(a) + \phi(b)$, for all $a, b \in R$;
- 3. $\phi(ab) = \phi(a)\phi(b)$, for all $a, b \in R$.

If ϕ is furthermore bijective, then it is called an **isomorphism**. We say that R is **isomorphic** to R', denoted by $R \cong R'$, if there exists an isomorphism ϕ from R to R'.

Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.

Examples of ring homomorphisms:

- 1. For any positive integer n, the map $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by mapping k to its reminder when divided by n is a surjective ring homomorphism.
- 2. Let R be the set of all functions from \mathbb{R} to \mathbb{R} . Fix $a \in \mathbb{R}$. Then the evaluation map $\phi_a : R \to \mathbb{R}$ defined by $f \mapsto f(a)$ is a ring homomorphism.

Proposition 3.3. A subring of a ring $(R, +, \cdot)$ is a subset $S \subset R$ containing 1_R and closed under + and \cdot which forms a ring under the inherited operations.

Proposition 3.4. Let $\phi : R \to R'$ be a ring homomorphism. Then

- $\phi(0) = 0'$, where 0 and 0' are the additive identities in R and R' respectively.
- For any $a \in R$, $\phi(-a) = -\phi(a)$.
- For any subring $S \subset R$, $\phi(S)$ is a subring of R'.
- For any subring $S' \subset R'$, $\phi^{-1}(S')$ is a subring of R.

Remark 3.5. Similar to groups, we can define the category Ring of rings. A free object on n generators in the category Comm Ring of commutative rings is given by the polynomial ring $\mathbb{Z}[x_1, \ldots, x_n]$. This places the polynomial ring on the same footing as the free group and finite dimensional vector spaces:

$$F_{\text{Grp}}(a_1, \dots, a_n) = \text{free group on } n \text{ generators},$$

$$F_{\text{Ab}}(a_1, \dots, a_n) = \mathbb{Z}^n,$$

$$F_{\text{Vect}_F}(a_1, \dots, a_n) = F^n,$$

$$F_{\text{Comm Ring}}(a_1, \dots, a_n) = \mathbb{Z}[x_1, \dots, x_n].$$

Definition 3.6. Let $\phi : R \to R'$ be a ring homomorphism. The additive subgroup

$$\ker \phi := \phi^{-1}(0') = \{a \in R : \phi(a) = 0'\}$$

is called the **kernel** of ϕ .

Proposition 3.7. A ring homomorphism $\phi : R \to R'$ is injective if and only if ker $\phi = \{0\}$.

Definition 3.8. An additive subgroup I of a ring R such that $aI \subset I$ and $Ib \subset I$ for any $a, b \in R$ is called an *ideal* of R.

Proposition 3.9. For any homomorphism $\phi : R \to R'$, ker ϕ is an ideal of R.

Theorem 3.10. Let $I \subset R$ be an additive subgroup. Then the multiplication

$$(a+I)(b+I) = (ab) + I$$

on additive cosets is well-defined if and only if I is an ideal.

Corollary 3.11. Let $I \subset R$ be an ideal. Then the additive cosets of I in R form a ring, called the **quotient** ring of R by I and denoted by R/I, under the operations

$$(a + I) + (b + I) = (a + b) + I,$$

 $(a + I)(b + I) = (ab) + I.$

Proposition 3.12. Let $I \subset R$ be an ideal. Then the map $\pi : R \to R/I$ defined by $\pi(a) = a + I$ is a surjective ring homomorphism with ker $\pi = I$; this map is called the **projection map** or **canonical map**.

Hence "ideal" and "kernel of a ring homomorphism" are equivalent concepts.

Theorem 3.13. (*First Isomorphism Theorem*) Let $\varphi : R \to R'$ be a ring homomorphism. Let $I = \ker \varphi$. Then the map $\overline{\varphi} : R/I \to \varphi(R)$ defined by

$$\overline{\varphi}(a+I) = \varphi(a)$$

is an isomorphism such that $\varphi = \overline{\varphi} \circ \pi$.

Here are some examples:

- 1. $n\mathbb{Z} \subset \mathbb{Z}$ is an ideal, and $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ as rings.
- 2. Let R be the set of all functions from \mathbb{R} to \mathbb{R} . Fix $a \in \mathbb{R}$. Then $I_a := \{f \in R : f(a) = 0\}$ is an ideal of R since it is the kernel of the evaluation map ϕ_a , and $R/I_a \cong \mathbb{R}$ as rings. On the other hand, the subset S consisting of all constant functions is a subring but *not* an ideal.
- 3. For any ring R, both $\{0\}$ and R are ideals of R. An ideal $I \subsetneq R$ is called **proper** and ideal $\{0\} \subsetneq I \subset R$ is called **nontrivial**.
- 4. Let R be a commutative ring. Let $a \in R$. Then the set of all multiples of a

$$\langle a \rangle := \{ ra : r \in R \}$$

is an ideal, called the **principal ideal generated by** a. Note that $R = \langle 1 \rangle$.

5. More generally, let $A \subset R$ be a nonempty subset of a commutative ring R. Then the set of all finite linear combinations of elements of A

 $\langle A \rangle := \{ r_1 a_1 + \dots + r_k a_k : k \in \mathbb{Z}_{>0}, r_i \in R, a_i \in A \}$

is an ideal, called the **ideal generated by** A.

Proposition 3.14. Let *F* be a field.

- If char(F) = 0, then there exists an embedding $\mathbb{Q} \hookrightarrow F$.
- If char(F) = p, then there exists an embedding $\mathbb{Z}_p \hookrightarrow F$.

Because of this, the fields \mathbb{Q} , \mathbb{Z}_p (where p is a prime) are called **prime fields**.

4 Polynomial rings

Definition 4.1. Let R be a nonzero commutative ring. A polynomial f(x) with coefficients in R is a formal sum

$$f(x) = \sum_{i=0}^{\infty} a_i x^i$$

where $a_i \in R$ and $a_i = 0$ for all but finitely many *i*'s. If $a_i \neq 0$ for some *i*, then the largest such integer is called the **degree** of f(x). We denote by R[x] the set of all polynomials with coefficients in R.

Proposition 4.2. R[x] is a commutative ring under the usual addition and multiplication of polynomials. **Proposition 4.3** (Division algorithm). Let F be a field. Let $f(x), g(x) \in F[x]$ be two nonzero polynomials. Then there exist unique $q(x), r(x) \in F[x]$ such that

$$f(x) = q(x)g(x) + r(x),$$

and either r(x) = 0 or $\deg r(x) < \deg g(x)$.

Corollary 4.4. An element $a \in F$ is a **root** (or **zero**) of f(x) (i.e. f(a) = 0) if and only if f(x) is divisible by x - a.

Corollary 4.5. A nonzero polynomial $f(x) \in F[x]$ of positive degree n can have at most n roots in F.

Definition 4.6. An integral domain D is called a **principal ideal domain (PID)** if every ideal in D is principal.

An example of PID is given by \mathbb{Z} .

Proposition 4.7. For any field F, F[x] is a PID.

Definition 4.8. A nonconstant polynomial $f(x) \in F[x]$ is said to be **irreducible over** F if it cannot be written as a product g(x)h(x) where both g(x) and h(x) have degrees lower than that of f(x). Otherwise, f(x) is said to be reducible.

Examples:

- 1. $x^2 + 1$ is irreducible over \mathbb{R} but reducible over \mathbb{C} .
- 2. $f(x) = x^3 + 3x + 2 \in \mathbb{Z}_5[x]$ is irreducible over \mathbb{Z}_5 since it has no roots in \mathbb{Z}_5 (which is easy to check).

Lemma 4.9 (Gauss' lemma). If $f(x) \in \mathbb{Z}[x]$ can be factored as a product of two polynomials in $\mathbb{Q}[x]$, it can also be factored as a product of two polynomials in $\mathbb{Z}[x]$.

Theorem 4.10 (Eisenstein criterion). Let $p \in \mathbb{Z}$ be a prime. Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$. Suppose that $p \nmid a_n$, $p : a_i$ for all i < n and $p^2 \nmid a_0$. Then f(x) is irreducible over \mathbb{Q} .

Examples:

- 1. $5x^5 9x^4 3x^2 12$ is irreducible over \mathbb{Q} .
- 2. For any prime p, the p-th cyclotomic polynomial

$$\Phi_p(x) := \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + x + 1$$

is irreducible over \mathbb{Q} .

Theorem 4.11. Let F be a field. For any polynomial $f(x) \in F[x]$, the following statements are equiva*lent:*

- 1. $F[x]/\langle f(x) \rangle$ is a field.
- 2. $F[x]/\langle f(x) \rangle$ is an integral domain.
- 3. f(x) is irreducible over F.