Math 3030 Abstract Algebra Review of basic group theory

1 Groups

Definition 1.1. A group (G, *) is a nonempty set G together with a binary operation

$$G \times G \to G$$
,
 $(a,b) \mapsto a * b$,

called the group operation or "multiplication", such that

• * is associative, i.e.

$$(a*b)*c = a*(b*c)$$

for any $a, b, c \in G$.

• There exists an element $e \in G$, called an **identity**, such that

$$a * e = e * a = a$$

for any $a \in G$.

• Each element $a \in G$ has an inverse $a^{-1} \in G$, i.e.

$$a * a^{-1} = a^{-1} * a = e.$$

Remark 1.2. We often write $a \cdot b$, or simply ab, to denote a * b.

It is straightforward to show that both the identity and inverse of any given element are unique.

Also, the **cancellation laws** hold, i.e. for any $a,b,c\in G$, ab=ac implies that b=c and likewise ba=ca implies that b=c. This can be used to show that $(ab)^{-1}=b^{-1}a^{-1}$ for any $a,b\in G$ (or more generally, $(a_1a_2\cdots a_k)^{-1}=a_k^{-1}a_{k-1}^{-1}\cdots a_1^{-1}$ for any $a_1,a_2,\ldots,a_k\in G$).

Definition 1.3. The order of G, denoted as |G|, is the number of elements in G. We call G finite (resp. infinite) if $|G| < \infty$ (resp. $|G| = \infty$).

Definition 1.4. If the group operation is commutative, i.e. ab = ba for any $a, b \in G$, we say that G is abelian; otherwise, G is said to be **nonabelian**.

Remark 1.5. When G is abelian, we usually use + to denote the group operation, 0 to denote the identity, and -a to denote the inverse of an element $a \in G$.

Here are some examples of groups:

- 1. Given any field F equipped with the addition + and multiplication \cdot , both (F,+) and $(F^{\times} := F \setminus \{0\}, \cdot)$ are abelian groups. Examples include $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with the usual addition and multiplication.
- 2. Given a commutative ring R, the set of units R^{\times} is an abelian group under ring multiplication.
- 3. The set of integers \mathbb{Z} is an abelian group under addition, but the set of nonzero integers $\mathbb{Z} \setminus \{0\}$ is *not* a group under multiplication.
- 4. For any nonzero integer n, the set $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ is a finite abelian group under addition mod n.
- 5. Any vector space V is an abelian group under addition. (This is part of the definition of a vector space.)
- 6. The set of all $m \times n$ matrices is an abelian group under matrix addition. More generally, given any group G and a nonempty set X, the set of all maps from X to G form a group using the group operation in G, which is abelian if G is so.
- 7. The set of all nonsingular $n \times n$ matrices with coefficients in a field F is a group under multiplication, denoted by $GL_n(F)$ and called the **general linear group over** F. For $n \geq 2$, this group is nonabelian.
- 8. Let X be a nonempty set, and let S_X be the set of all bijective maps (permutations) σ : X → X. Then S_X is a group under composition of maps, called the **symmetric group on** X.
 For any positive integer n, the group S_{In}, where I_n = {1,...,n}, is denoted as S_n and called the n-th symmetric group. For n ≥ 3, S_n is a finite nonabelian group.
- 9. If G_1, G_2 are groups, then the Cartesian product $G_1 \times G_2$ is naturally a group whose multiplication is defined componentwise; this is called the **direct product** of G_1 and G_2 . Similarly, one can define the direct product of *any* number of groups.

2 Subgroups

Definition 2.1. Let (G, *) be a group. Let $H \subset G$ be a subset. If H is closed under *, i.e. $a * b \in H$ for any $a, b \in H$ and H is a group under the induced group operation *, then we call H a **subgroup** of G, denoted by H < G.

To check that a subset is a subgroup, we have the following very useful criterion:

Proposition 2.2. A nonempty subset H of a group G is a subgroup if and only if $ab^{-1} \in H$ for any $a, b \in H$.

Proposition 2.3. A finite subset H of a group G is a subgroup if and only if H is nonempty and closed under multiplication.

Here are some examples of subgroups:

- 1. We have $\mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$ under addition, and $\mathbb{Q}^{\times} < \mathbb{R}^{\times} < \mathbb{C}^{\times}$ under multiplication.
- 2. For any group G, we have $\{e\} < G$ (called the **trivial subgroup**) and G < G. A subgroup $H \nleq G$ is called **proper** and a subgroup $\{e\} \nleq H < G$ is called **nontrivial**.
- 3. Vector subspaces are additive subgroups.
- 4. The subset

$$SL_n(F) = \{ M \in GL_n(F) \mid \det M = 1 \}$$

is a subgroup of $GL_n(F)$, called the **special linear group**. We also have the subgroups

$$O_n(F) = \{ M \in GL_n(F) \mid M^T M = I_n = MM^T \},$$

 $SO_n(F) = \{ M \in O_n(F) \mid \det M = 1 \}$

of $GL_n(F)$, called the **orthogonal group** and **special orthogonal group** respectively, where M^T denotes the transpose of M and I_n denotes the $n \times n$ identity matrix. For $F = \mathbb{C}$, we have the subgroups

$$U(n) = \{ M \in GL_n \mid M^*M = I_n = MM^* \},$$

$$SU(n) = \{ M \in U_n \mid \det M = 1 \}$$

of $GL_n(\mathbb{C})$, called the **unitary group** and **special unitary group** respectively, where M^* denotes the conjugate transpose of M. When n = 1, this gives the **circle group**

$$U(1) = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

as a multiplicative subgroup of \mathbb{C}^{\times} .

Remark 2.4. The above are examples of matrix groups, which are in turn examples of Lie groups. When F is a finite field, they for an important class of finite simple groups.

3 Homomorphisms and isomorphisms

Definition 3.1. A map $\phi: G \to G'$ from a group G to another group G' is called a **homomorphism** if

$$\phi(ab) = \phi(a)\phi(b)$$

for any $a, b \in G$. If ϕ is furthermore bijective, then it is called an **isomorphism**. We say that G is **isomorphic** to G', denoted by $G \cong G'$, if there exists an isomorphism ϕ from G to G'. An isomorphism from G onto itself is called an **automorphism**; the set of all automorphisms of a group G is a group itself, denoted by $\operatorname{Aut}(G)$.

Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.

Isomorphic groups share the same algebraic properties (they only differ by relabeling of their elements). A fundamental question in group theory is to *classify* all groups up to isomorphism.

Examples of homomorphisms:

- 1. A linear map (resp. isomorphism) between two vector spaces V and W is a homomorphism (resp. isomorphism) between the abelian groups (V, +) and (W, +).
- 2. The determinant $\det: GL_n(F) \to F^{\times}$ is a homomorphism.
- 3. The exponential function $\exp:(\mathbb{R},+)\to(\mathbb{R}_{>0},\cdot)$ is an isomorphism, whose inverse is the logarithm log.
- 4. For any nonzero integer n, $n\mathbb{Z} < \mathbb{Z}$ and the map $\phi : n\mathbb{Z} \to \mathbb{Z}$ defined by $\phi(nk) = k$ is an isomorphism. So \mathbb{Z} and its proper subgroup $n\mathbb{Z}$ (when $|n| \geq 2$) are abstractly isomorphic.
- 5. For any positive integer n, the map $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by mapping k to its reminder when divided by n is a surjective homomorphism.
- 6. The map

$$SO_2(\mathbb{R}) \to U(1), \quad \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mapsto e^{i\theta}$$

is an isomorphism.

7. The finite groups \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are *not* isomorphic though they have the same order.

4 Cyclic groups; generating sets

4.1 Cyclic (sub)groups

Definition 4.1. Let G be a group and $a \in G$ be any element. Then the subset

$$\langle a \rangle := \{ a^n \mid n \in \mathbb{Z} \}$$

is a subgroup of G, called the **cyclic subgroup** generated by a. The **order** of a, denoted by |a|, is defined as the order of $\langle a \rangle$.

Proposition 4.2. If $|a| < \infty$, then |a| is the smallest positive integer k such that $a^k = e$.

Definition 4.3. A group G is called **cyclic** if there exists $a \in G$ such that $G = \langle a \rangle$. In this case, we say a generates G, or a is a generator of G.

Proposition 4.4. Every cyclic group is abelian.

Remark 4.5. *The converse is false.*

Theorem 4.6. (Classification of cyclic groups) Any infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Any cyclic group of finite order n is isomorphic to $(\mathbb{Z}_n, +)$.

For example, the set of *n*-th roots of unity $U_n := \{z \in \mathbb{C} \mid z^n = 1\}$ is a cyclic subgroup of U(1). By the above theorem, U_n is isomorphic to \mathbb{Z}_n . (This is a better way to visualize the adjective "cyclic".) In fact, U_n is generated by $\exp \frac{2\pi \mathbf{i}}{n}$. (How about the cyclic subgroup generated by $\exp 2\pi \mathbf{i}t$ where $t \in \mathbb{R}$?)

Proposition 4.7. A subgroup of a cyclic group is also cyclic.

Corollary 4.8. Any subgroup of \mathbb{Z} is of the form $n\mathbb{Z}$ for $n \in \mathbb{Z}$.

Theorem 4.9. (Classification of subgroups of a finite cyclic group) Let $G = \langle a \rangle$ be a cyclic group of finite order n. Let $a^s \in G$. Then $|a^s| = n/d$ where $d = \gcd(s, n)$. Moreover, $\langle a^s \rangle = \langle a^t \rangle$ if and only if $\gcd(s, n) = \gcd(t, n)$.

Corollary 4.10. All generators of a cyclic group $G = \langle a \rangle$ are of the form a^r where r is relatively prime to n.

For example, \mathbb{Z}_{18} is generated by 1, 5, 7, 11, 13 or 17.

4.2 Generating sets

Proposition 4.11. The intersection of any collection of subgroups is also a subgroup.

Definition 4.12. Let G be a group, and $A \subset G$ any subset. The smallest subgroup $\langle A \rangle$ of G containing A is called the **subgroup generated by** A. By the above proposition, we must have

$$\langle A \rangle = \bigcap_{\{H < G \mid A \subset H\}} H.$$

If $G = \langle A \rangle$, then we say that the subset A **generates** G. If G is generated by a finite set A, then we say that G is **finitely generated**.

Remark 4.13. In practice, the subgroup generated by a subset A is given by the set of all finite products of powers of elements in A, i.e.

$$\langle A \rangle = \{ a_1^{k_1} \cdots a_n^{k_n} \mid a_i \in A, k_i \in \mathbb{Z} \}.$$

For example, there are 2 distinct groups of order 4: the cyclic group \mathbb{Z}_4 and the **Klein 4-group** V, which is not cyclic, but is finitely generated and abelian; in fact, $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ is generated by (1,0) and (0,1).

Remark 4.14. All groups of order less than or equal to 3 are cyclic.

As another example, the group $SL_2(\mathbb{Z})$ is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Remark 4.15. *Not all abelian groups are finitely generated, e.g.* \mathbb{Q} *,* \mathbb{R} *.*

5 Symmetric groups and dihedral groups

5.1 Symmetric groups

Recall that, given an integer $n \geq 2$, the *n*-th symmetric group S_n is the set of bijective maps from the set $I_n = \{1, \ldots, n\}$ onto itself equipped with the composition of maps. Elements of S_n are called **permutations** (of I_n).

For example, a permutation in S_{10} is of the form

Definition 5.1. Let i_1, i_2, \ldots, i_r $(r \le n)$ be distinct elements of I_n . Denote by (i_1, i_2, \ldots, i_r) the permutation

$$i_1 \mapsto i_2, i_2 \mapsto i_3, \dots, i_{r-1} \mapsto i_r, i_r \mapsto i_1$$

and $j \mapsto j$ for any $j \in I_n \setminus \{i_1, i_2, \dots, i_r\}$. We call (i_1, i_2, \dots, i_r) an r-cycle, and r is the **length** of the cycle. A 2-cycle is also called a **transposition**.

For example, in S_5 , we have

$$(1,3,5,4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = (5,4,1,3).$$

Proposition 5.2. Every permutation $\sigma \in S_n$ is a product of disjoint cycles (unique up to ordering of the terms in the product). In particular, S_n is generated by cycles.

For example, in S_8 , we have

$$\left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{array}\right) = (1,3,6)(2,8)(4,7,5).$$

Remark 5.3. Composition of disjoint cycles is commutative.

Proposition 5.4. For an r-cycle μ , we have $|\mu| = r$. Hence, if we write a permutation σ as a product of disjoint cycles $\sigma = \mu_1 \mu_2 \cdots \mu_k$, then

$$|\sigma| = lcm(r_1, r_2, \dots, r_k),$$

where $r_i = |\mu_i| = length \ of \ \mu_i$.

Since
$$(i_1, i_2, \dots, i_r) = (i_1, i_r)(i_1, i_{r-1}) \cdots (i_1, i_3)(i_1, i_2)$$
, we have

Proposition 5.5. Every permutation is a product of transpositions. In particular, S_n is generated by transpositions.

Corollary 5.6. S_n is generated by (1,2) and $(1,2,\ldots,n)$.

Note that the decomposition in Proposition 5.5 is not unique, e.g.

$$(1,2,3) = (1,3)(1,2) = (1,3)(2,3)(1,2)(1,3).$$

However, the *parity* is well-defined:

Proposition 5.7. No permutation can be expressed both as a product of an even number of transpositions and also as a product of an odd number of transpositions.

Hence the following definition makes sense.

Definition 5.8. A permutation $\sigma \in S_n$ is called **even** (resp. **odd**) if it can be expressed as a product of an even (resp. odd) number of transpositions.

Proposition 5.9. Let A_n be the subset of all even permutations in S_n . Then A_n is a subgroup, called the n-th alternating group. Moreover, the order of A_n is $|S_n|/2 = n!/2$.

5.2 Dihedral groups

Given an integer $n \geq 3$, we let $\Delta = \Delta_n \subset \mathbb{R}^2$ be a regular n-gon centered at the origin. An **isometry** is a distance-preserving map between metric spaces. If we equip \mathbb{R}^2 with the Euclidean metric, then a **symmetry** of Δ is an isometry (or rigid motion) $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\phi(\Delta) = \Delta$.

Definition 5.10. The n-th dihedral group D_n is the set of symmetries of Δ equipped with composition of maps.

We make the following observations:

- 1. Enumerating the vertices of Δ as $1, 2, \ldots, n$ (say, in the counter-clockwise direction), we can view each element of D_n as a permutation of $I_n = \{1, 2, \ldots, n\}$. Also note that two distinct symmetries will give rise to two distinct permutations of I_n . So we may regard D_n as a subgroup of S_n .
- 2. There is a complete classification of isometries of \mathbb{R}^2 : **translations**, **rotations**, **reflections** and **glide reflections**. But a symmetry of Δ fixes the origin $0 \in \mathbb{R}^2$ and both translations and glide reflections have no fixed points, so that D_n consists of *only* rotations and reflections.
- 3. Let $a \in D_n$ be the rotation by the angle $2\pi/n$ in the counter-clockwise direction. Then the set of rotations in D_n is given by $\langle a \rangle = \{ \mathrm{id}, a, a^2, \ldots, a^{n-1} \}$. On the other hand, there are n reflections in D_n . So we conclude that

$$|D_n|=2n.$$

Furthermore, the composition of two reflections is a rotation (which can be seen by flipping a 2-dollar coin). Hence if we let $b \in D_n$ be any reflection, then the set of reflections in D_n is given by $\{b, ab, a^2b, \ldots, a^{n-1}b\}$. In particular,

$$D_n = \langle a, b \rangle.$$

4. There are three relations among a and b:

$$a^n = 1, b^2 = 1, ab = ba^{-1}.$$

(Again you can confirm this by playing with a 2-dollar coin.) In fact, they are all the relations, so that we have a **presentation**

$$D_n = \langle a, b \mid a^n, b^2, abab \rangle.$$

Remark 5.11. Some authors use D_{2n} to denote the n-th dihedral group. An excellent reference for dihedral groups and other interesting groups of symmetries is Chapter 5 in Michael Artin's Algebra.

Remark 5.12. The dihedral groups form a class of finite subgroups of $SO_3(\mathbb{R})$. The others are given by: finite cyclic groups and the groups of symmetries of the Platonic solids (there are 5 of such solids, corresponding to 3 different groups).

6 Cosets and the Theorem of Lagrange

Given a subgroup H < G, we can define two equivalence relations:

$$a \sim_L b \Leftrightarrow a^{-1}b \in H,$$

 $a \sim_R b \Leftrightarrow ab^{-1} \in H.$

These induce two partitions of G, whose equivalence classes are called cosets of H:

Definition 6.1. Let H < G, and $a \in G$. The sets $aH := \{ah \mid h \in H\}$ and $Ha := \{ha \mid h \in H\}$ are called the **left** and **right coset** of H containing a respectively.

Here are some examples:

1. Let n be a positive integer. Consider the subgroup $n\mathbb{Z} < \mathbb{Z}$. Then the cosets are given by

$$\{k + n\mathbb{Z} \mid k \in \mathbb{Z}\} = \{k + n\mathbb{Z} \mid k \in \{0, 1, \dots, n - 1\}\},\$$

which is in a 1-1 correspondence with elements of \mathbb{Z}_n .

Remark 6.2. When G is abelian, any left coset is equal (as a subset) to the corresponding right coset, and we usually use a + H to denote a coset.

2. For $\mathbb{Z} < \mathbb{R}$, the cosets are given by

$$\{t + \mathbb{Z} \mid t \in \mathbb{R}\} = \{t + \mathbb{Z} \mid t \in [0, 1)\},\$$

which is in a 1-1 correspondence with the circle group U(1) (by mapping $t + \mathbb{Z}$ to $\exp 1\pi i t$).

3. Given a vector subspace $W \subset V$, the cosets of the additive subgroup (W, +) < (V, +) are given by the *affine translates* of the subspace W:

$$\{v+W\mid v\in V\}.$$

If we choose another subspace $Q \subset V$ which is complementary to W, i.e. such that $Q \cap W = \{0\}$ and $\dim(Q) = \dim(V) - \dim(W)$, then each coset is represented by a unique element in Q:

$$\{v + W \mid v \in V\} = \{v + W \mid v \in Q\}.$$

4. Consider $S_3 = \{ id, \rho, \rho^2, \mu, \rho\mu, \rho^2\mu \}$, where $\rho = (1, 2, 3)$ and $\mu = (1, 2)$. Let H be the cyclic subgroup generated by μ . Then the left cosets are

$$H = \{id, \mu\}, \ \rho H = \{\rho, \rho\mu\}, \ \rho^2 H = \{\rho^2, \rho^2\mu\},$$

while the right cosets are

$$H = \{id, \mu\}, H\rho = \{\rho, \rho^2 \mu\}, H\rho^2 = \{\rho^2, \rho\mu\}.$$

Note that $\rho H \neq H \rho$ and $\rho^2 H \neq H \rho^2$.

Since any two cosets are of the same cardinality as H, we have the important:

Theorem 6.3. (Theorem of Lagrange) Suppose that G is a finite group. Then |H| divides |G| for any subgroup H < G.

Corollary 6.4. Suppose that G is a finite group. Then $a^{|G|} = e$ for any $a \in G$.

Corollary 6.5. Every group of prime order is cyclic.

Definition 6.6. Let H < G. The number of distinct left (or right) cosets of H in G, denoted by [G : H], is called the **index** of H in G.

Remark 6.7. The index [G:H] may be infinite. But if G is finite, then (the proof of) the Theorem of Lagrange implies that

$$|G| = [G:H]|H|.$$

7 (Optional) The language of categories

Definition 7.1. A category \mathcal{C} consists of

- a class Obj(C) of **objects** of the category; and
- for every two objects A, B of C, a set $Hom_{C}(A, B)$ of morphisms,

satisfying the following properties:

- For every object A of \mathbb{C} , there exists (at least) one morphism $\mathbf{1}_A \in Hom_{\mathbb{C}}(A,A)$, the **identity** on A.
- For every triple of objects A, B, C of C, there is a map

$$Hom_{\mathfrak{C}}(A,B) \times Hom_{\mathfrak{C}}(B,C) \to Hom_{\mathfrak{C}}(A,C)$$

sending a pair of morphisms (f,g) to their **compositon** $g \circ f$.

• The composition is associative, i.e. if $f \in Hom_{\mathcal{C}}(A,B)$, $g \in Hom_{\mathcal{C}}(B,C)$ and $h \in Hom_{\mathcal{C}}(C,D)$, then we have

$$(h \circ g) \circ f = h \circ (g \circ f).$$

• The identity morphisms are identities with respect to composition, i.e. for all $f \in Hom_{\mathcal{C}}(A, B)$, we have

$$f \circ \mathbf{1}_A = f$$
, $\mathbf{1}_B \circ f = f$.

Examples:

- 1. The category Set is defined by
 - Obj(Set) = the class of all sets;
 - for A, B in Obj(Set), $Hom_{Set}(A, B) = the set of all maps <math>f: A \to B$.
- 2. Let S be a set and \sim be a relation on S which is *reflexive* and *transitive*. Then we can encode this data into a category with:
 - objects = elements of S;
 - for objects a, b (i.e. $a, b \in S$), we let $\operatorname{Hom}(a, b)$ be the singleton consisting of $(a, b) \in S \times S$ if $a \sim b$, and let $\operatorname{Hom}(a, b) = \emptyset$ otherwise.
- 3. The category Grp is defined by
 - Obj(Grp) = the class of all groups;
 - for G_1, G_2 in Obj(Grp), $Hom_{Grp}(G_1, G_2) = the$ set of all group homomorphisms $\varphi: G_1 \to G_2$.

Similarly, one has the category $Vect_F$ of vector spaces over a field F, the category Ab of abelian groups, etc.

Definition 7.2. Let \mathcal{C} be a category. A morphism $f \in Hom_{\mathcal{C}}(A, B)$ is called an **isomorphism** if there exists $g \in Hom_{\mathcal{C}}(B, A)$ such that

$$q \circ f = \mathbf{1}_A$$
, $f \circ q = \mathbf{1}_B$.

Proposition 7.3. The inverse of an isomorphism is unique.

Definition 7.4. An automorphism of an object A of a category \mathfrak{C} is an isomorphism from A to itself. The set of automorphisms of A is denoted $Aut_{\mathfrak{C}}(A)$; it is a subset of the set $End_{\mathfrak{C}}(A)$ of endomorphisms of A.

Note that $Aut_{\mathcal{C}}(A)$ is a group with identity $\mathbf{1}_A$.

Definition 7.5. Let \mathcal{C} be a category. A morphism $f \in Hom_{\mathcal{C}}(A, B)$ is called a **monomorphism** if, for any object Z of \mathcal{C} and any morphisms $g_1, g_2 \in Hom(Z, A)$, we have

$$f \circ g_1 = f \circ g_2 \Longrightarrow g_1 = g_2.$$

A morphism $f \in Hom_{\mathbb{C}}(A, B)$ is called a **epimorphism** if, for any object Z of \mathbb{C} and any morphisms $g_1, g_2 \in Hom(B, Z)$, we have

$$q_1 \circ f = q_2 \circ f \Longrightarrow q_1 = q_2.$$

Note that in the category Set, monomorphisms (resp. epimorphisms) are precisely the injective (resp. surjective) maps.

Definition 7.6. Let \mathbb{C} be a category. We say that an object I of \mathbb{C} is **initial** in \mathbb{C} if $Hom_{\mathbb{C}}(I, A)$ is a singleton for every object A of \mathbb{C} . We say that an object F of \mathbb{C} is **final** in \mathbb{C} if $Hom_{\mathbb{C}}(A, F)$ is a singleton for every object A of \mathbb{C} .

One may use *terminal* to mean either possibility. In general, initial or final objects may not exist; and if they do, they may not be unique. For example, in Set, the empty set \emptyset is initial, while any singleton is a final object. Nevertheless, if initial/final objects exist, they are *unique up to a unique isomorphism*.

Initial/final objects are useful for introducing universal properties. Examples:

1. Let \sim be an equivalence relation on a set A. Consider a category whose objects are pairs (φ, Z) consisting of a set Z and a map $\varphi: A \to Z$ such that $\varphi(a) = \varphi(b)$ whenever $a \sim b$, and the morphisms between two objects (φ_1, Z_1) and (φ_2, Z_2) are commutative diagrams

Then $(\pi, A/\sim)$, where A/\sim is the quotient of A by \sim and $\pi:A\to A/\sim$ is the canonical projection, is an *initial* object of this category.

- 2. Let A, B be sets. Consider the category $Set_{A,B}$ defined by
 - $Obj(Set_{A,B}) = diagrams$

$$Z \xrightarrow{f} A$$

$$Z \xrightarrow{g} B$$

$$(7.2)$$

in Set: and

• morphisms are commutative diagrams

Then the product

$$A \times B \xrightarrow{\pi_{B}} B$$

$$(7.4)$$

where $\pi_A: A\times B\to A$ and $\pi_B: A\times B\to B$ are the natural projections, is a *final* object in $\operatorname{Set}_{A,B}$. If we replace Set by the category Grp of groups, then the product of two groups $G_1\times G_2$ is similarly a final object in the category $\operatorname{Grp}_{G_1,G_2}$. More generally, we can replace Set by any category $\operatorname{\mathfrak{C}}$ and defines a *categorical product* in $\operatorname{\mathfrak{C}}$.

For instance, if we consider the category obtained from \leq on \mathbb{Z} as above, then a categorical product of two integers $a,b\in\mathbb{Z}$ is given by $\min(a,b)$ (check this!). This gives an unexpected connection between 'the Cartesian product of two sets' and 'the minimum of two integers'.

- 3. Let A, B be objects of a category \mathfrak{C} . Consider the category $\mathfrak{C}^{A,B}$ defined by
 - $Obj(\mathcal{C}^{A,B}) = diagrams$

$$A \xrightarrow{f} Z$$

$$B \xrightarrow{g} Z$$

$$(7.5)$$

in C; and

• morphisms are commutative diagrams

Then an *initial* object in $\mathbb{C}^{A,B}$ is called a **coproduct** of A and B. For example, the **disjoint union** $A \sqcup B$ of two sets $A, B \in \mathsf{Obj}(\mathsf{Set})$ is a coproduct in Set .