Math 3030 Abstract Algebra Review of basic group theory

1 Groups

Definition 1.1. A group $(G, *)$ is a nonempty set G together with a binary operation

$$
\begin{aligned}
G \times G & \rightarrow G \\
(a, b) & \mapsto a * b,
\end{aligned}
$$

called the group operation or "multiplication", such that

- * is associative, i.e.

$$
(a * b) * c=a *(b * c)
$$

for any $a, b, c \in G$.

- There exists an element $e \in G$, called an identity, such that

$$
a * e=e * a=a
$$

for any $a \in G$.

- Each element $a \in G$ has an inverse $a^{-1} \in G$, i.e.

$$
a * a^{-1}=a^{-1} * a=e .
$$

Remark 1.2. We often write $a \cdot b$, or simply $a b$, to denote $a * b$.
It is straightforward to show that both the identity and inverse of any given element are unique.
Also, the cancellation laws hold, i.e. for any $a, b, c \in G, a b=a c$ implies that $b=c$ and likewise $b a=c a$ implies that $b=c$. This can be used to show that $(a b)^{-1}=b^{-1} a^{-1}$ for any $a, b \in G$ (or more generally, $\left(a_{1} a_{2} \cdots a_{k}\right)^{-1}=a_{k}^{-1} a_{k-1}^{-1} \cdots a_{1}^{-1}$ for any $\left.a_{1}, a_{2}, \ldots, a_{k} \in G\right)$.

Definition 1.3. The order of G, denoted as $|G|$, is the number of elements in G. We call G finite (resp. infinite) if $|G|<\infty($ resp. $|G|=\infty)$.

Definition 1.4. If the group operation is commutative, i.e. $a b=b a$ for any $a, b \in G$, we say that G is abelian; otherwise, G is said to be nonabelian.

Remark 1.5. When G is abelian, we usually use + to denote the group operation, 0 to denote the identity, and $-a$ to denote the inverse of an element $a \in G$.

Here are some examples of groups:

1. Given any field F equipped with the addition + and multiplication \cdot, both $(F,+)$ and $\left(F^{\times}:=\right.$ $F \backslash\{0\}, \cdot)$ are abelian groups. Examples include $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with the usual addition and multiplication.
2. Given a commutative ring R, the set of units R^{\times}is an abelian group under ring multiplication.
3. The set of integers \mathbb{Z} is an abelian group under addition, but the set of nonzero integers $\mathbb{Z} \backslash\{0\}$ is not a group under multiplication.
4. For any nonzero integer n, the set $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ is a finite abelian group under addition $\bmod n$.
5. Any vector space V is an abelian group under addition. (This is part of the definition of a vector space.)
6. The set of all $m \times n$ matrices is an abelian group under matrix addition. More generally, given any group G and a nonempty set X, the set of all maps from X to G form a group using the group operation in G, which is abelian if G is so.
7. The set of all nonsingular $n \times n$ matrices with coefficients in a field F is a group under multiplication, denoted by $G L_{n}(F)$ and called the general linear group over F. For $n \geq 2$, this group is nonabelian.
8. Let X be a nonempty set, and let S_{X} be the set of all bijective maps (permutations) $\sigma: X \rightarrow X$. Then S_{X} is a group under composition of maps, called the symmetric group on X.
For any positive integer n, the group $S_{I_{n}}$, where $I_{n}=\{1, \ldots, n\}$, is denoted as S_{n} and called the n-th symmetric group. For $n \geq 3, S_{n}$ is a finite nonabelian group.
9. If G_{1}, G_{2} are groups, then the Cartesian product $G_{1} \times G_{2}$ is naturally a group whose multiplication is defined componentwise; this is called the direct product of G_{1} and G_{2}. Similarly, one can define the direct product of any number of groups.

2 Subgroups

Definition 2.1. Let $(G, *)$ be a group. Let $H \subset G$ be a subset. If H is closed under $*$, i.e. $a * b \in H$ for any $a, b \in H$ and H is a group under the induced group operation $*$, then we call H a subgroup of G, denoted by $H<G$.

To check that a subset is a subgroup, we have the following very useful criterion:
Proposition 2.2. A nonempty subset H of a group G is a subgroup if and only if $a b^{-1} \in H$ for any $a, b \in H$.

Proposition 2.3. A finite subset H of a group G is a subgroup if and only if H is nonempty and closed under multiplication.

Here are some examples of subgroups:

1. We have $\mathbb{Z}<\mathbb{Q}<\mathbb{R}<\mathbb{C}$ under addition, and $\mathbb{Q}^{\times}<\mathbb{R}^{\times}<\mathbb{C}^{\times}$under multiplication.
2. For any group G, we have $\{e\}<G$ (called the trivial subgroup) and $G<G$. A subgroup $H \supsetneqq G$ is called proper and a subgroup $\{e\} \supsetneqq H<G$ is called nontrivial.
3. Vector subspaces are additive subgroups.
4. The subset

$$
S L_{n}(F)=\left\{M \in G L_{n}(F) \mid \operatorname{det} M=1\right\}
$$

is a subgroup of $G L_{n}(F)$, called the special linear group. We also have the subgroups

$$
\begin{aligned}
O_{n}(F) & =\left\{M \in G L_{n}(F) \mid M^{T} M=I_{n}=M M^{T}\right\}, \\
S O_{n}(F) & =\left\{M \in O_{n}(F) \mid \operatorname{det} M=1\right\}
\end{aligned}
$$

of $G L_{n}(F)$, called the orthogonal group and special orthogonal group respectively, where M^{T} denotes the transpose of M and I_{n} denotes the $n \times n$ identity matrix. For $F=\mathbb{C}$, we have the subgroups

$$
\begin{aligned}
U(n) & =\left\{M \in G L_{n} \mid M^{*} M=I_{n}=M M^{*}\right\} \\
S U(n) & =\left\{M \in U_{n} \mid \operatorname{det} M=1\right\}
\end{aligned}
$$

of $G L_{n}(\mathbb{C})$, called the unitary group and special unitary group respectively, where M^{*} denotes the conjugate transpose of M. When $n=1$, this gives the circle group

$$
U(1)=\{z \in \mathbb{C}| | z \mid=1\}
$$

as a multiplicative subgroup of \mathbb{C}^{\times}.
Remark 2.4. The above are examples of matrix groups, which are in turn examples of Lie groups. When F is a finite field, they for an important class of finite simple groups.

3 Homomorphisms and isomorphisms

Definition 3.1. A map $\phi: G \rightarrow G^{\prime}$ from a group G to another group G^{\prime} is called a homomorphism if

$$
\phi(a b)=\phi(a) \phi(b)
$$

for any $a, b \in G$. If ϕ is furthermore bijective, then it is called an isomorphism. We say that G is isomorphic to G^{\prime}, denoted by $G \cong G^{\prime}$, if there exists an isomorphism ϕ from G to G^{\prime}. An isomorphism from G onto itself is called an automorphism; the set of all automorphisms of a group G is a group itself, denoted by $\operatorname{Aut}(G)$.

Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.

Isomorphic groups share the same algebraic properties (they only differ by relabeling of their elements). A fundamental question in group theory is to classify all groups up to isomorphism.

Examples of homomorphisms:

1. A linear map (resp. isomorphism) between two vector spaces V and W is a homomorphism (resp. isomorphism) between the abelian groups $(V,+)$ and $(W,+)$.
2. The determinant det : $G L_{n}(F) \rightarrow F^{\times}$is a homomorphism.
3. The exponential function $\exp :(\mathbb{R},+) \rightarrow\left(\mathbb{R}_{>0}, \cdot\right)$ is an isomorphism, whose inverse is the logarithm log.
4. For any nonzero integer $n, n \mathbb{Z}<\mathbb{Z}$ and the map $\phi: n \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\phi(n k)=k$ is an isomorphism. So \mathbb{Z} and its proper subgroup $n \mathbb{Z}$ (when $|n| \geq 2$) are abstractly isomorphic.
5. For any positive integer n, the map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ defined by mapping k to its reminder when divided by n is a surjective homomorphism.
6. The map

$$
S O_{2}(\mathbb{R}) \rightarrow U(1), \quad\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \mapsto e^{\mathrm{i} \theta}
$$

is an isomorphism.
7. The finite groups \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not isomorphic though they have the same order.

4 Cyclic groups; generating sets

4.1 Cyclic (sub)groups

Definition 4.1. Let G be a group and $a \in G$ be any element. Then the subset

$$
\langle a\rangle:=\left\{a^{n} \mid n \in \mathbb{Z}\right\}
$$

is a subgroup of G, called the cyclic subgroup generated by a. The order of a, denoted by $|a|$, is defined as the order of $\langle a\rangle$.

Proposition 4.2. If $|a|<\infty$, then $|a|$ is the smallest positive integer k such that $a^{k}=e$.
Definition 4.3. A group G is called cyclic if there exists $a \in G$ such that $G=\langle a\rangle$. In this case, we say a generates G, or a is a generator of G.

Proposition 4.4. Every cyclic group is abelian.
Remark 4.5. The converse is false.

Theorem 4.6. (Classification of cyclic groups) Any infinite cyclic group is isomorphic to $(\mathbb{Z},+)$. Any cyclic group of finite order n is isomorphic to $\left(\mathbb{Z}_{n},+\right)$.

For example, the set of n-th roots of unity $U_{n}:=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$ is a cyclic subgroup of $U(1)$. By the above theorem, U_{n} is isomorphic to \mathbb{Z}_{n}. (This is a better way to visualize the adjective "cyclic".) In fact, U_{n} is generated by $\exp \frac{2 \pi \mathbf{i}}{n}$. (How about the cyclic subgroup generated by $\exp 2 \pi \mathbf{i} t$ where $t \in \mathbb{R}$?)

Proposition 4.7. A subgroup of a cyclic group is also cyclic.
Corollary 4.8. Any subgroup of \mathbb{Z} is of the form $n \mathbb{Z}$ for $n \in \mathbb{Z}$.
Theorem 4.9. (Classification of subgroups of a finite cyclic group) Let $G=\langle a\rangle$ be a cyclic group of finite order n. Let $a^{s} \in G$. Then $\left|a^{s}\right|=n / d$ where $d=\operatorname{gcd}(s, n)$. Moreover, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Corollary 4.10. All generators of a cyclic group $G=\langle a\rangle$ are of the form a^{r} where r is relatively prime to n.

For example, \mathbb{Z}_{18} is generated by $1,5,7,11,13$ or 17 .

4.2 Generating sets

Proposition 4.11. The intersection of any collection of subgroups is also a subgroup.
Definition 4.12. Let G be a group, and $A \subset G$ any subset. The smallest subgroup $\langle A\rangle$ of G containing A is called the subgroup generated by A. By the above proposition, we must have

$$
\langle A\rangle=\bigcap_{\{H<G \mid A \subset H\}} H
$$

If $G=\langle A\rangle$, then we say that the subset A generates G. If G is generated by a finite set A, then we say that G is finitely generated.

Remark 4.13. In practice, the subgroup generated by a subset A is given by the set of all finite products of powers of elements in A, i.e.

$$
\langle A\rangle=\left\{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}} \mid a_{i} \in A, k_{i} \in \mathbb{Z}\right\} .
$$

For example, there are 2 distinct groups of order 4: the cyclic group \mathbb{Z}_{4} and the Klein 4-group V, which is not cyclic, but is finitely generated and abelian; in fact, $V \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is generated by $(1,0)$ and $(0,1)$.

Remark 4.14. All groups of order less than or equal to 3 are cyclic.
As another example, the group $S L_{2}(\mathbb{Z})$ is generated by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
Remark 4.15. Not all abelian groups are finitely generated, e.g. \mathbb{Q}, \mathbb{R}.

5 Symmetric groups and dihedral groups

5.1 Symmetric groups

Recall that, given an integer $n \geq 2$, the n-th symmetric group S_{n} is the set of bijective maps from the set $I_{n}=\{1, \ldots, n\}$ onto itself equipped with the composition of maps. Elements of S_{n} are called permutations (of I_{n}).

For example, a permutation in S_{10} is of the form

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 10 & 6 & 7 & 8 & 9 & 1 & 4 & 2 & 5
\end{array}\right)
$$

Definition 5.1. Let $i_{1}, i_{2}, \ldots, i_{r}(r \leq n)$ be distinct elements of I_{n}. Denote by $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ the permutation

$$
i_{1} \mapsto i_{2}, i_{2} \mapsto i_{3}, \ldots, i_{r-1} \mapsto i_{r}, i_{r} \mapsto i_{1}
$$

and $j \mapsto j$ for any $j \in I_{n} \backslash\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$. We call $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ an r-cycle, and r is the length of the cycle. A 2-cycle is also called a transposition.

For example, in S_{5}, we have

$$
(1,3,5,4)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 5 & 1 & 4
\end{array}\right)=(5,4,1,3)
$$

Proposition 5.2. Every permutation $\sigma \in S_{n}$ is a product of disjoint cycles (unique up to ordering of the terms in the product). In particular, S_{n} is generated by cycles.

For example, in S_{8}, we have

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 8 & 6 & 7 & 4 & 1 & 5 & 2
\end{array}\right)=(1,3,6)(2,8)(4,7,5) .
$$

Remark 5.3. Composition of disjoint cycles is commutative.
Proposition 5.4. For an r-cycle μ, we have $|\mu|=r$. Hence, if we write a permutation σ as a product of disjoint cycles $\sigma=\mu_{1} \mu_{2} \cdots \mu_{k}$, then

$$
|\sigma|=\operatorname{lcm}\left(r_{1}, r_{2}, \ldots, r_{k}\right)
$$

where $r_{i}=\left|\mu_{i}\right|=$ length of μ_{i}.
Since $\left(i_{1}, i_{2}, \ldots, i_{r}\right)=\left(i_{1}, i_{r}\right)\left(i_{1}, i_{r-1}\right) \cdots\left(i_{1}, i_{3}\right)\left(i_{1}, i_{2}\right)$, we have
Proposition 5.5. Every permutation is a product of transpositions. In particular, S_{n} is generated by transpositions.

Corollary 5.6. S_{n} is generated by $(1,2)$ and $(1,2, \ldots, n)$.

Note that the decomposition in Proposition 5.5 is not unique, e.g.

$$
(1,2,3)=(1,3)(1,2)=(1,3)(2,3)(1,2)(1,3)
$$

However, the parity is well-defined:
Proposition 5.7. No permutation can be expressed both as a product of an even number of transpositions and also as a product of an odd number of transpositions.

Hence the following definition makes sense.
Definition 5.8. A permutation $\sigma \in S_{n}$ is called even (resp. odd) if it can be expressed as a product of an even (resp. odd) number of transpositions.

Proposition 5.9. Let A_{n} be the subset of all even permutations in S_{n}. Then A_{n} is a subgroup, called the n-th alternating group. Moreover, the order of A_{n} is $\left|S_{n}\right| / 2=n!/ 2$.

5.2 Dihedral groups

Given an integer $n \geq 3$, we let $\Delta=\Delta_{n} \subset \mathbb{R}^{2}$ be a regular n-gon centered at the origin. An isometry is a distance-preserving map between metric spaces. If we equip \mathbb{R}^{2} with the Euclidean metric, then a symmetry of Δ is an isometry (or rigid motion) $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\phi(\Delta)=\Delta$.

Definition 5.10. The n-th dihedral group D_{n} is the set of symmetries of Δ equipped with composition of maps.

We make the following observations:

1. Enumerating the vertices of Δ as $1,2, \ldots, n$ (say, in the counter-clockwise direction), we can view each element of D_{n} as a permutation of $I_{n}=\{1,2, \ldots, n\}$. Also note that two distinct symmetries will give rise to two distinct permutations of I_{n}. So we may regard D_{n} as a subgroup of S_{n}.
2. There is a complete classification of isometries of \mathbb{R}^{2} : translations, rotations, reflections and glide reflections. But a symmetry of Δ fixes the origin $0 \in \mathbb{R}^{2}$ and both translations and glide reflections have no fixed points, so that D_{n} consists of only rotations and reflections.
3. Let $a \in D_{n}$ be the rotation by the angle $2 \pi / n$ in the counter-clockwise direction. Then the set of rotations in D_{n} is given by $\langle a\rangle=\left\{\mathrm{id}, a, a^{2}, \ldots, a^{n-1}\right\}$. On the other hand, there are n reflections in D_{n}. So we conclude that

$$
\left|D_{n}\right|=2 n .
$$

Furthermore, the composition of two reflections is a rotation (which can be seen by flipping a 2dollar coin). Hence if we let $b \in D_{n}$ be any reflection, then the set of reflections in D_{n} is given by $\left\{b, a b, a^{2} b, \ldots, a^{n-1} b\right\}$. In particular,

$$
D_{n}=\langle a, b\rangle .
$$

4. There are three relations among a and b :

$$
a^{n}=1, b^{2}=1, a b=b a^{-1}
$$

(Again you can confirm this by playing with a 2-dollar coin.) In fact, they are all the relations, so that we have a presentation

$$
D_{n}=\left\langle a, b \mid a^{n}, b^{2}, a b a b\right\rangle
$$

Remark 5.11. Some authors use $D_{2 n}$ to denote the n-th dihedral group. An excellent reference for dihedral groups and other interesting groups of symmetries is Chapter 5 in Michael Artin's Algebra.

Remark 5.12. The dihedral groups form a class of finite subgroups of $\mathrm{SO}_{3}(\mathbb{R})$. The others are given by: finite cyclic groups and the groups of symmetries of the Platonic solids (there are 5 of such solids, corresponding to 3 different groups).

6 Cosets and the Theorem of Lagrange

Given a subgroup $H<G$, we can define two equivalence relations:

$$
\begin{aligned}
a \sim_{L} b & \Leftrightarrow a^{-1} b \in H, \\
a \sim_{R} b & \Leftrightarrow a b^{-1} \in H .
\end{aligned}
$$

These induce two partitions of G, whose equivalence classes are called cosets of H :
Definition 6.1. Let $H<G$, and $a \in G$. The sets $a H:=\{a h \mid h \in H\}$ and $H a:=\{h a \mid h \in H\}$ are called the left and right coset of H containing a respectively.

Here are some examples:

1. Let n be a positive integer. Consider the subgroup $n \mathbb{Z}<\mathbb{Z}$. Then the cosets are given by

$$
\{k+n \mathbb{Z} \mid k \in \mathbb{Z}\}=\{k+n \mathbb{Z} \mid k \in\{0,1, \ldots, n-1\}\}
$$

which is in a 1-1 correspondence with elements of \mathbb{Z}_{n}.
Remark 6.2. When G is abelian, any left coset is equal (as a subset) to the corresponding right coset, and we usually use a $+H$ to denote a coset.
2. For $\mathbb{Z}<\mathbb{R}$, the cosets are given by

$$
\{t+\mathbb{Z} \mid t \in \mathbb{R}\}=\{t+\mathbb{Z} \mid t \in[0,1)\}
$$

which is in a 1-1 correspondence with the circle group $U(1)$ (by mapping $t+\mathbb{Z}$ to $\exp 1 \pi \mathbf{i} t$).
3. Given a vector subspace $W \subset V$, the cosets of the additive subgroup $(W,+)<(V,+)$ are given by the affine translates of the subspace W :

$$
\{v+W \mid v \in V\}
$$

If we choose another subspace $Q \subset V$ which is complementary to W, i.e. such that $Q \cap W=\{0\}$ and $\operatorname{dim}(Q)=\operatorname{dim}(V)-\operatorname{dim}(W)$, then each coset is represented by a unique element in Q :

$$
\{v+W \mid v \in V\}=\{v+W \mid v \in Q\}
$$

4. Consider $S_{3}=\left\{\operatorname{id}, \rho, \rho^{2}, \mu, \rho \mu, \rho^{2} \mu\right\}$, where $\rho=(1,2,3)$ and $\mu=(1,2)$. Let H be the cyclic subgroup generated by μ. Then the left cosets are

$$
H=\{\text { id }, \mu\}, \rho H=\{\rho, \rho \mu\}, \rho^{2} H=\left\{\rho^{2}, \rho^{2} \mu\right\}
$$

while the right cosets are

$$
H=\{\mathrm{id}, \mu\}, H \rho=\left\{\rho, \rho^{2} \mu\right\}, H \rho^{2}=\left\{\rho^{2}, \rho \mu\right\} .
$$

Note that $\rho H \neq H \rho$ and $\rho^{2} H \neq H \rho^{2}$.

Since any two cosets are of the same cardinality as H, we have the important:
Theorem 6.3. (Theorem of Lagrange) Suppose that G is a finite group. Then $|H|$ divides $|G|$ for any subgroup $H<G$.

Corollary 6.4. Suppose that G is a finite group. Then $a^{|G|}=e$ for any $a \in G$.
Corollary 6.5. Every group of prime order is cyclic.
Definition 6.6. Let $H<G$. The number of distinct left (or right) cosets of H in G, denoted by $[G: H]$, is called the index of H in G.

Remark 6.7. The index $[G: H]$ may be infinite. But if G is finite, then (the proof of) the Theorem of Lagrange implies that

$$
|G|=[G: H]|H| .
$$

7 (Optional) The language of categories

Definition 7.1. A category \mathcal{C} consists of

- a class Obj(C$)$ of objects of the category; and
- for every two objects A, B of \mathcal{C}, a set $\operatorname{Hom}_{\mathfrak{C}}(A, B)$ of morphisms,
satisfying the following properties:
- For every object A of \mathfrak{C}, there exists (at least) one morphism $\mathbf{1}_{A} \in \operatorname{Hom}_{\mathfrak{C}}(A, A)$, the identity on A.
- For every triple of objects A, B, C of \mathfrak{C}, there is a map

$$
\operatorname{Hom}_{\mathfrak{C}}(A, B) \times \operatorname{Hom}_{\mathfrak{C}}(B, C) \rightarrow \operatorname{Hom}_{\mathfrak{C}}(A, C)
$$

sending a pair of morphisms (f, g) to their compositon $g \circ f$.

- The composition is associative, i.e. if $f \in \operatorname{Hom}_{\mathcal{C}}(A, B), g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$ and $h \in \operatorname{Hom}_{\mathcal{C}}(C, D)$, then we have

$$
(h \circ g) \circ f=h \circ(g \circ f) .
$$

- The identity morphisms are identities with respect to composition, i.e. for all $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$, we have

$$
f \circ \mathbf{1}_{A}=f, \quad \mathbf{1}_{B} \circ f=f .
$$

Examples:

1. The category Set is defined by

- $\operatorname{Obj}($ Set $)=$ the class of all sets;
- for A, B in $\operatorname{Obj}(\operatorname{Set}), \operatorname{Hom}_{\text {set }}(A, B)=$ the set of all maps $f: A \rightarrow B$.

2. Let S be a set and \sim be a relation on S which is reflexive and transitive. Then we can encode this data into a category with:

- objects $=$ elements of S;
- for objects a, b (i.e. $a, b \in S$), we let $\operatorname{Hom}(a, b)$ be the singleton consisting of $(a, b) \in S \times S$ if $a \sim b$, and let $\operatorname{Hom}(a, b)=\emptyset$ otherwise.

3. The category Grp is defined by

- $\operatorname{Obj}(\operatorname{Grp})=$ the class of all groups;
- for G_{1}, G_{2} in $\operatorname{Obj}(\operatorname{Grp}), \operatorname{Hom}_{\operatorname{Grp}}\left(G_{1}, G_{2}\right)=$ the set of all group homomorphisms $\varphi: G_{1} \rightarrow$ G_{2}.

Similarly, one has the category Vect_{F} of vector spaces over a field F, the category Ab of abelian groups, etc.

Definition 7.2. Let \mathcal{C} be a category. A morphism $f \in \operatorname{Hom}_{\mathfrak{C}}(A, B)$ is called an isomorphism if there exists $g \in \operatorname{Hom}_{\mathfrak{C}}(B, A)$ such that

$$
g \circ f=\mathbf{1}_{A}, \quad f \circ g=\mathbf{1}_{B} .
$$

Proposition 7.3. The inverse of an isomorphism is unique.
Definition 7.4. An automorphism of an object A of a category \mathcal{C} is an isomorphism from A to itself. The set of automorphisms of A is denoted Aute (A); it is a subset of the set End ${ }_{\mathrm{C}}(A)$ of endomorphisms of A.

Note that $\operatorname{Aut}_{e}(A)$ is a group with identity $\mathbf{1}_{A}$.
Definition 7.5. Let \mathcal{C} be a category. A morphism $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ is called a monomorphism if, for any object Z of \mathcal{C} and any morphisms $g_{1}, g_{2} \in \operatorname{Hom}(Z, A)$, we have

$$
f \circ g_{1}=f \circ g_{2} \Longrightarrow g_{1}=g_{2}
$$

A morphism $f \in \operatorname{Hom}_{\mathfrak{C}}(A, B)$ is called a epimorphism if, for any object Z of \mathcal{C} and any morphisms $g_{1}, g_{2} \in \operatorname{Hom}(B, Z)$, we have

$$
g_{1} \circ f=g_{2} \circ f \Longrightarrow g_{1}=g_{2}
$$

Note that in the category Set, monomorphisms (resp. epimorphisms) are precisely the injective (resp. surjective) maps.

Definition 7.6. Let \mathcal{C} be a category. We say that an object I of \mathcal{C} is initial in \mathcal{C} if $\operatorname{Hom}_{\mathfrak{C}}(I, A)$ is a singleton for every object A of \mathcal{C}. We say that an object F of \mathcal{C} is final in \mathcal{C} if $\operatorname{Hom}_{\mathcal{C}}(A, F)$ is a singleton for every object A of C .

One may use terminal to mean either possibility. In general, initial or final objects may not exist; and if they do, they may not be unique. For example, in Set, the empty set \emptyset is initial, while any singleton is a final object. Nevertheless, if initial/final objects exist, they are unique up to a unique isomorphism.

Initial/final objects are useful for introducing universal properties. Examples:

1. Let \sim be an equivalence relation on a set A. Consider a category whose objects are pairs (φ, Z) consisting of a set Z and a map $\varphi: A \rightarrow Z$ such that $\varphi(a)=\varphi(b)$ whenever $a \sim b$, and the morphisms between two objects $\left(\varphi_{1}, Z_{1}\right)$ and $\left(\varphi_{2}, Z_{2}\right)$ are commutative diagrams

Then $(\pi, A / \sim)$, where A / \sim is the quotient of A by \sim and $\pi: A \rightarrow A / \sim$ is the canonical projection, is an initial object of this category.
2. Let A, B be sets. Consider the category $\operatorname{Set}_{A, B}$ defined by

- $\operatorname{Obj}\left(\operatorname{Set}_{A, B}\right)=$ diagrams

in Set; and
- morphisms are commutative diagrams

Then the product

where $\pi_{A}: A \times B \rightarrow A$ and $\pi_{B}: A \times B \rightarrow B$ are the natural projections, is a final object in $\operatorname{Set}_{A, B}$.
If we replace Set by the category Grp of groups, then the product of two groups $G_{1} \times G_{2}$ is similarly a final object in the category $\operatorname{Grp}_{G_{1}, G_{2}}$. More generally, we can replace Set by any category \mathcal{C} and defines a categorical product in \mathcal{C}.
For instance, if we consider the category obtained from \leq on \mathbb{Z} as above, then a categorical product of two integers $a, b \in \mathbb{Z}$ is given by $\min (a, b)$ (check this!). This gives an unexpected connection between 'the Cartesian product of two sets' and 'the minimum of two integers'.
3. Let A, B be objects of a category \mathcal{C}. Consider the category $\mathcal{C}^{A, B}$ defined by

- $\operatorname{Obj}\left(\mathrm{C}^{A, B}\right)=$ diagrams

in \mathcal{C}; and
- morphisms are commutative diagrams

Then an initial object in $\mathcal{C}^{A, B}$ is called a coproduct of A and B. For example, the disjoint union $A \sqcup B$ of two sets $A, B \in \mathrm{Obj}(\mathrm{Set})$ is a coproduct in Set.

