MATH3030 Tutorial 9

J. SHEN

16 November, 2023

9 Product rings and the Chinese Remainder theorem

9.1 Definition and characterization of product rings

9.1.1 Product rings

Let R, R^{\prime} be rings. Then $R \times R^{\prime}:=\left\{\left(r, r^{\prime}\right): r \in R, r^{\prime} \in R^{\prime}\right\}$ is a ring with component-wise addition and multiplication. The unity is ($1_{R}, 1_{R^{\prime}}$).

We have two projections: $\pi_{1}: R \times R^{\prime} \rightarrow R$ by $\pi_{1}\left(r, r^{\prime}\right)=r$, and $\pi_{2}: R \times R^{\prime} \rightarrow R^{\prime}$ by $\pi_{2}\left(r, r^{\prime}\right)=r^{\prime}$. The two maps preserves identity, addition, and multiplication. The kernels are $0 \times R^{\prime}$ and $R \times 0$ respectively.

In other word, we have two short exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow 0 \times R^{\prime} \longrightarrow R \times R^{\prime} \xrightarrow{\pi_{1}} R \longrightarrow 0 . \\
& 0 \longrightarrow R \times 0 \longrightarrow R^{\prime} \xrightarrow{\pi_{2}} R^{\prime} \longrightarrow 0 .
\end{aligned}
$$

Note that $R \times 0$ is a ring with unity $e_{1}=(1,0)$, and it is isomorphic to R. But it is not a subring of $R \times R^{\prime}$ because the unity of the two rings are not the same. Similar things hold for $0 \times R^{\prime}$, which has unity $e_{2}=(0,1)$.

Note that $e_{1}^{2}=e_{1}$. We say that an element with this property as e_{1} is idempotent.

9.1.2 A characterization of product rings

In fact, in the commutative case, product rings are characterized by idempotent elements:

Proposition 9.1. Let S be a commutative ring. Let $e \in S$ be an idempotent element, that is, $e^{2}=e$.

1. The element $e^{\prime}=1-e$ is also idempotent, and $e e^{\prime}=e^{\prime} e=0$.
2. $e S$ and $e^{\prime} S$ are rings with identity elements e and e^{\prime}. Moreover, $m_{e}: S \rightarrow e S$ and $m_{e^{\prime}}: S \rightarrow e^{\prime} S$ are ring homomorphisms, where $m_{a}(s)=$ as for $a, s \in S$.
3. $S \simeq e S \times e^{\prime} S$.

Proof.

1. In the commutative ring R, since $e^{2}=e, e e^{\prime}=e^{\prime} e=(1-e) e=e-e^{2}=0$ and $\left(e^{\prime}\right)^{2}=e^{\prime}(1-e)=e^{\prime}-e^{\prime} e=e^{\prime}$.
2. Note that $m_{e}: S \rightarrow S$ is additive: $m_{e}\left(s+s^{\prime}\right)=e\left(s+s^{\prime}\right)=e s+e s^{\prime}=$ $m_{e}(s)+m_{e}\left(s^{\prime}\right)$ for any $s, s^{\prime} \in S$, so its image $e S$ is an additive subgroup of S. Let $e s, e s^{\prime} \in e S$ with $s, s^{\prime} \in S$. Then eses ${ }^{\prime}=e\left(s e s^{\prime}\right) \in e S$. Therefore, $e S$ is closed under multiplication. Moreover, for any $s \in S, e(e s)=e^{2} s=e s$. Then e is an identity element in $e S$. It follows that $e S$ is a ring with identity element e.

Note that $m_{e}(1)=e$, and for any $s, s^{\prime} \in S, m_{e}\left(s+s^{\prime}\right)=m_{e}(s)+m_{e}\left(s^{\prime}\right)$ and $m_{e}(s) m_{e}\left(s^{\prime}\right)=e s e s^{\prime}=e^{2} s s^{\prime}=e s s^{\prime}=m_{e}\left(s s^{\prime}\right)$. Therefore, m_{e} is a ring homomorphism.

The statements for e^{\prime} are analogous.
3. Define $\phi: S \rightarrow e S \times e^{\prime} S$ by $\phi(s)=\left(e s, e^{\prime} s\right)=\left(m_{e}(s), m_{e^{\prime}}(s)\right)$. By $2, \phi$ is a ring homomorphism. Let $s \in \operatorname{ker}(\phi)$, then $e s=e^{\prime} s=0$. Then $s=\left(e+e^{\prime}\right) s=0$. Therefore ϕ is injective. Let $(a, b) \in e S \times e^{\prime} S$. Write $(a, b)=\left(e s_{1}, e^{\prime} s_{2}\right)$, where $s_{1}, s_{2} \in S$. Then $\phi(a+b)=\left(e a+e b, e^{\prime} a+e^{\prime} b\right)=\left(e e s_{1}+e e^{\prime} s_{2}, e e^{\prime} s_{1}+e^{\prime} e^{\prime} s_{2}\right)=$ $\left(e s_{1}, e^{\prime} s_{2}\right)=(a, b)$. Therefore, ϕ is bijective. Thus, $\phi: S \simeq e S \times e^{\prime} S$.

9.2 The Chinese remainder theorem

Theorem 9.2. Let $I, J \subseteq R$ be ideals, such that $I+J=R$. Then

1. $I \cap J=I J$.
2. $R / I J \simeq R / I \times R / J$.

Proof.

1. Clearly, $I J \subseteq I$ and $I J \subseteq J$. Then $I J \subseteq I \cap J$. Conversely, let $x \in I \cap J$. Since $I+J=R$, there exists some $a \in I, b \in J$ such that $a+b=1$. Then $x=x(a+b)=x a+x b$. Now, $x \in J$ and $a \in I$ imply that $x a \in I J ; x \in I$ and $b \in J$ imply that $x b \in I J$. Therefore, $x=x a+x b \in I J$. It follows that $I J=I \cap J$.
2. Define $\phi: R \rightarrow R / I \times R / J$ by $\phi(r)=(r+I, r+J)$. Then ϕ is a ring homomorphism. The kernel is $\operatorname{ker}(\phi)=I \cap J=I J$.

Let $a \in I, b \in J$ be such that $a+b=1$. Then $\phi(a)=(a+I, a+J)=(0+I, a+$ $b+J)=(0+I, 1+J)$, and $\phi(b)=(b+I, b+J)=(a+b+I, 0+J)=(1+I, 0+J)$. Then for any $u, v \in R, \phi(u b+v a)=(u+I, v+J)$. Therefore, ϕ is surjective. By the first isomorphism theorem, ϕ induces an isomorphism $R / I J \simeq R / I \times R / J$.

Example. 1. $\mathbb{Z} /(105) \simeq \mathbb{Z} /(3) \times \mathbb{Z} /(5) \times \mathbb{Z} /(7)$.
2. $\mathbb{Z}[i] /(5) \simeq \mathbb{F}_{5}[x] /\left(x^{2}+1\right) \simeq \mathbb{F}_{5}[x] /(x-2) \times \mathbb{F}_{5}[x] /(x+2) \simeq \mathbb{F}_{5} \times \mathbb{F}_{5}$.
3. $\mathbb{Z}[i] /(13) \simeq \mathbb{F}_{13}[x] /\left(x^{2}+1\right) \simeq \mathbb{F}_{13}[x] /(x-5) \times \mathbb{F}_{13}[x] /(x+5) \simeq \mathbb{F}_{13} \times \mathbb{F}_{13}$.

