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9 Product rings and the Chinese Remainder theorem

9.1 Definition and characterization of product rings

9.1.1 Product rings

Let R,R′ be rings. Then R × R′ := {(r, r′) : r ∈ R, r′ ∈ R′} is a ring with

component-wise addition and multiplication. The unity is (1R, 1R′).

We have two projections: π1 : R×R′ → R by π1(r, r
′) = r, and π2 : R×R′ → R′

by π2(r, r
′) = r′. The two maps preserves identity, addition, and multiplication.

The kernels are 0×R′ and R× 0 respectively.

In other word, we have two short exact sequences:

0 0×R′ R×R′ R 0.

0 R× 0 R×R′ R′ 0.

π1

π2

Note that R × 0 is a ring with unity e1 = (1, 0), and it is isomorphic to R. But

it is not a subring of R × R′ because the unity of the two rings are not the same.

Similar things hold for 0×R′, which has unity e2 = (0, 1).

Note that e21 = e1. We say that an element with this property as e1 is idempo-

tent.

9.1.2 A characterization of product rings

In fact, in the commutative case, product rings are characterized by idempotent

elements:

Proposition 9.1. Let S be a commutative ring. Let e ∈ S be an idempotent element,

that is, e2 = e.

1. The element e′ = 1− e is also idempotent, and ee′ = e′e = 0.
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2. eS and e′S are rings with identity elements e and e′. Moreover, me : S → eS

and me′ : S → e′S are ring homomorphisms, where ma(s) = as for a, s ∈ S.

3. S ≃ eS × e′S.

Proof.

1. In the commutative ring R, since e2 = e, ee′ = e′e = (1− e)e = e− e2 = 0 and

(e′)2 = e′(1− e) = e′ − e′e = e′.

2. Note that me : S → S is additive: me(s + s′) = e(s + s′) = es + es′ =

me(s) + me(s
′) for any s, s′ ∈ S, so its image eS is an additive subgroup of

S. Let es, es′ ∈ eS with s, s′ ∈ S. Then eses′ = e(ses′) ∈ eS. Therefore, eS

is closed under multiplication. Moreover, for any s ∈ S, e(es) = e2s = es.

Then e is an identity element in eS. It follows that eS is a ring with identity

element e.

Note that me(1) = e, and for any s, s′ ∈ S, me(s + s′) = me(s) + me(s
′)

and me(s)me(s
′) = eses′ = e2ss′ = ess′ = me(ss

′). Therefore, me is a ring

homomorphism.

The statements for e′ are analogous.

3. Define ϕ : S → eS×e′S by ϕ(s) = (es, e′s) = (me(s),me′(s)). By 2, ϕ is a ring

homomorphism. Let s ∈ ker(ϕ), then es = e′s = 0. Then s = (e + e′)s = 0.

Therefore ϕ is injective. Let (a, b) ∈ eS× e′S. Write (a, b) = (es1, e
′s2), where

s1, s2 ∈ S. Then ϕ(a+ b) = (ea+eb, e′a+e′b) = (ees1+ee′s2, ee
′s1+e′e′s2) =

(es1, e
′s2) = (a, b). Therefore, ϕ is bijective. Thus, ϕ : S ≃ eS × e′S.

9.2 The Chinese remainder theorem

Theorem 9.2. Let I, J ⊆ R be ideals, such that I + J = R. Then

1. I ∩ J = IJ .

2. R/IJ ≃ R/I ×R/J .

Proof.
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1. Clearly, IJ ⊆ I and IJ ⊆ J . Then IJ ⊆ I ∩ J . Conversely, let x ∈ I ∩ J .

Since I + J = R, there exists some a ∈ I, b ∈ J such that a + b = 1. Then

x = x(a + b) = xa + xb. Now, x ∈ J and a ∈ I imply that xa ∈ IJ ; x ∈ I

and b ∈ J imply that xb ∈ IJ . Therefore, x = xa + xb ∈ IJ . It follows that

IJ = I ∩ J .

2. Define ϕ : R → R/I × R/J by ϕ(r) = (r + I, r + J). Then ϕ is a ring

homomorphism. The kernel is ker(ϕ) = I ∩ J = IJ .

Let a ∈ I, b ∈ J be such that a+b = 1. Then ϕ(a) = (a+I, a+J) = (0+I, a+

b+J) = (0+I, 1+J), and ϕ(b) = (b+I, b+J) = (a+b+I, 0+J) = (1+I, 0+J).

Then for any u, v ∈ R, ϕ(ub+va) = (u+I, v+J). Therefore, ϕ is surjective. By

the first isomorphism theorem, ϕ induces an isomorphism R/IJ ≃ R/I×R/J .

Example. 1. Z/(105) ≃ Z/(3)× Z/(5)× Z/(7).
2. Z[i]/(5) ≃ F5[x]/(x

2 + 1) ≃ F5[x]/(x− 2)× F5[x]/(x+ 2) ≃ F5 × F5.

3. Z[i]/(13) ≃ F13[x]/(x
2 + 1) ≃ F13[x]/(x− 5)× F13[x]/(x+ 5) ≃ F13 × F13.
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