MATH3030 Tutorial 9

J. SHEN

16 November, 2023

9 Product rings and the Chinese Remainder theorem

9.1 Definition and characterization of product rings

9.1.1 Product rings

Let R, R' be rings. Then $R \times R' := \{(r, r') : r \in R, r' \in R'\}$ is a ring with component-wise addition and multiplication. The unity is $(1_R, 1_{R'})$.

We have two projections: $\pi_1 : R \times R' \to R$ by $\pi_1(r, r') = r$, and $\pi_2 : R \times R' \to R'$ by $\pi_2(r, r') = r'$. The two maps preserves identity, addition, and multiplication. The kernels are $0 \times R'$ and $R \times 0$ respectively.

In other word, we have two short exact sequences:

$$0 \longrightarrow 0 \times R' \longrightarrow R \times R' \xrightarrow{\pi_1} R \longrightarrow 0.$$

$$0 \longrightarrow R \times 0 \longrightarrow R \times R' \xrightarrow{\pi_2} R' \longrightarrow 0.$$

Note that $R \times 0$ is a ring with unity $e_1 = (1, 0)$, and it is isomorphic to R. But it is not a subring of $R \times R'$ because the unity of the two rings are not the same. Similar things hold for $0 \times R'$, which has unity $e_2 = (0, 1)$.

Note that $e_1^2 = e_1$. We say that an element with this property as e_1 is **idempotent**.

9.1.2 A characterization of product rings

In fact, in the commutative case, product rings are characterized by idempotent elements:

Proposition 9.1. Let S be a commutative ring. Let $e \in S$ be an idempotent element, that is, $e^2 = e$.

1. The element e' = 1 - e is also idempotent, and ee' = e'e = 0.

- 2. eS and e'S are rings with identity elements e and e'. Moreover, $m_e: S \to eS$ and $m_{e'}: S \to e'S$ are ring homomorphisms, where $m_a(s) = as$ for $a, s \in S$.
- 3. $S \simeq eS \times e'S$.

Proof.

9.2 The Chinese remainder theorem

Theorem 9.2. Let $I, J \subseteq R$ be ideals, such that I + J = R. Then

1. $I \cap J = IJ$.

2.
$$R/IJ \simeq R/I \times R/J$$
.

Example. 1. $\mathbb{Z}/(105) \simeq \mathbb{Z}/(3) \times \mathbb{Z}/(5) \times \mathbb{Z}/(7)$. 2. $\mathbb{Z}[i]/(5) \simeq \mathbb{F}_5[x]/(x^2+1) \simeq \mathbb{F}_5[x]/(x-2) \times \mathbb{F}_5[x]/(x+2) \simeq \mathbb{F}_5 \times \mathbb{F}_5$. 3. $\mathbb{Z}[i]/(13) \simeq \mathbb{F}_{13}[x]/(x^2+1) \simeq \mathbb{F}_{13}[x]/(x-5) \times \mathbb{F}_{13}[x]/(x+5) \simeq \mathbb{F}_{13} \times \mathbb{F}_{13}$.