MATH3030 Tutorial 9

J. SHEN

16 November, 2023

9 Product rings and the Chinese Remainder theorem

9.1 Definition and characterization of product rings

9.1.1 Product rings

Let R, R^{\prime} be rings. Then $R \times R^{\prime}:=\left\{\left(r, r^{\prime}\right): r \in R, r^{\prime} \in R^{\prime}\right\}$ is a ring with component-wise addition and multiplication. The unity is ($1_{R}, 1_{R^{\prime}}$).

We have two projections: $\pi_{1}: R \times R^{\prime} \rightarrow R$ by $\pi_{1}\left(r, r^{\prime}\right)=r$, and $\pi_{2}: R \times R^{\prime} \rightarrow R^{\prime}$ by $\pi_{2}\left(r, r^{\prime}\right)=r^{\prime}$. The two maps preserves identity, addition, and multiplication. The kernels are $0 \times R^{\prime}$ and $R \times 0$ respectively.

In other word, we have two short exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow 0 \times R^{\prime} \longrightarrow R \times R^{\prime} \xrightarrow{\pi_{1}} R \longrightarrow 0 . \\
& 0 \longrightarrow R \times 0 \longrightarrow R^{\prime} \xrightarrow{\pi_{2}} R^{\prime} \longrightarrow 0 .
\end{aligned}
$$

Note that $R \times 0$ is a ring with unity $e_{1}=(1,0)$, and it is isomorphic to R. But it is not a subring of $R \times R^{\prime}$ because the unity of the two rings are not the same. Similar things hold for $0 \times R^{\prime}$, which has unity $e_{2}=(0,1)$.

Note that $e_{1}^{2}=e_{1}$. We say that an element with this property as e_{1} is idempotent.

9.1.2 A characterization of product rings

In fact, in the commutative case, product rings are characterized by idempotent elements:

Proposition 9.1. Let S be a commutative ring. Let $e \in S$ be an idempotent element, that is, $e^{2}=e$.

1. The element $e^{\prime}=1-e$ is also idempotent, and $e e^{\prime}=e^{\prime} e=0$.
2. $e S$ and $e^{\prime} S$ are rings with identity elements e and e^{\prime}. Moreover, $m_{e}: S \rightarrow e S$ and $m_{e^{\prime}}: S \rightarrow e^{\prime} S$ are ring homomorphisms, where $m_{a}(s)=$ as for $a, s \in S$.
3. $S \simeq e S \times e^{\prime} S$.

Proof.

9.2 The Chinese remainder theorem

Theorem 9.2. Let $I, J \subseteq R$ be ideals, such that $I+J=R$. Then

1. $I \cap J=I J$.
2. $R / I J \simeq R / I \times R / J$.

Example. 1. $\mathbb{Z} /(105) \simeq \mathbb{Z} /(3) \times \mathbb{Z} /(5) \times \mathbb{Z} /(7)$.
2. $\mathbb{Z}[i] /(5) \simeq \mathbb{F}_{5}[x] /\left(x^{2}+1\right) \simeq \mathbb{F}_{5}[x] /(x-2) \times \mathbb{F}_{5}[x] /(x+2) \simeq \mathbb{F}_{5} \times \mathbb{F}_{5}$.
3. $\mathbb{Z}[i] /(13) \simeq \mathbb{F}_{13}[x] /\left(x^{2}+1\right) \simeq \mathbb{F}_{13}[x] /(x-5) \times \mathbb{F}_{13}[x] /(x+5) \simeq \mathbb{F}_{13} \times \mathbb{F}_{13}$.

