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8 Basic theorems of ring theory

8.1 Properties of ring homomorphisms

Proposition 8.1 (Fraleigh 8th ed. thm 30.11). Let R be a ring (with 1, not assuming
commutativity). Let ¢ : R — R’ be a ring homomorphism. Then

1. $(0)=0

For any a € R, ¢(—a) = —¢(a).

If S is a subring of R, then ¢(S) is a subring of R’

If §" is a subring of R', then ¢—*(S") is a subring of R.

If N is an ideal of R, then ¢(N) is an ideal of ¢(R).

S v L

If N’ is an ideal of either R’ or ¢(R), then ¢~1(N’) is an ideal of R. (Ideals

mean two-sided ideals.)

PROOF.



8.2 First isomorphism theorem

Proposition 8.2 (First isomorphism theorem, Artin 11.4.2, Fraleigh 7th 26.17, 8th
30.17). Let ¢ : R — R’ be a ring homomorphism. Then ¢~1(0) C R is an ideal.
Moreover, ¢ induces ¢ : R/¢~1(0) — ¢(R), which is an isomorphism and which
satisfies the following commutative diagram.:

More generally, given ideal I C ¢~1(0), there exists a unique ¢ : R/I — R’
satisfying ¢ = ¢ o, where ™ : R — R/I is the natural surjection r s 1+ I.



8.3 Correspondence theorem

The following theorem is called the correspondence theorem, or the fourth isomor-

phism theorem, and is quite useful in identifying rings.

Proposition 8.3 (Artin 11.4.3). Let ¢ : R — R’ be a surjective homomorphism
with kernel K. Then there is an order-preserving bijection between

{Ideals of R containing K} <— {Ideals of R'}, given by

a: I o), and B: ¢ Y (I') < I

Moreover, R/I ~ R'JT' if I + I'.



Exercise 1. (Artin Q11.4.3) Identify the following rings: (a) Z[z]/(z? — 3,2z +
4), (b) Z[i]/(2+1), (c) Z[z]/(6,2x—1), (d)Z[x]/(22%—4,4x—5), (e) Z[z]/(x>+3,5).
Exercise 2. (Artin Q11.4.4) Are the rings Z[z]/(2? + 7) and Z[x]/(22% + 7)

isomorphic?
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Proposition 8.1 (Fraleigh 8th ed. thm 30.11). Let R be a ring (with 1, not assuming
commutativity). Let ¢ : R — R’ be a ring homomorphism. Then

1. $(0) =0
. For any a € R, ¢(—a) = —¢(a).
. If S is a subring of R, then ¢(S) is a subring of R’
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4. If S" is a subring of R', then ¢~1(S") is a subring of R.
5. If N is an ideal of R, then ¢(N) is an ideal of ¢(R).
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. If N" is an ideal of either R or ¢(R), then ¢~ 1(N') is an ideal of R. (Ideals

mean two-sided ideals.)

PROOF. Property 1 and 2 follows from ¢ : (R,+) — (R’,+') being a group homo-
morphism.

3. Since S is a subring of R, it is closed under —, x, and 1 € S. Then for
x,y € ¢(9), there exist a, b € S such that ¢(a) = z,¢(b) = y. Then a—b,ab € S, and
sox—y=¢(a—0b) € #(S), and zy = Pp(ab) € ¢(S). Moreover, 1 = ¢(1g) € ¢(5).
It follows that ¢(S) is a subring of R’.

4. Let S’ be a subring of R'. Then it is closed under —, x, and 1z € S’. For
a,b € 719", ¢(a),p(b) € S'. Then ¢(a —b) = ¢(a) — ¢p(b) € S" and ¢(ab) =
#(a)p(b) € S'. Since ¢(1g) = 1p € 5, 1g € ¢~1(S'). Therefore, ¢~ 1(5’) is a
subring of R.

5. Since N is an ideal of R, it is an additive subgroup of R, and for r € R,
n € N, rn,nr € N. Then ¢(N) is an additive subgroup of ¢(R) and for z € ¢(R),
y € ¢(N), there exists r € R,n € N such that ¢(r) = z,¢(n) = y. Then xy =



H(r)d(n) = B(rn) € $(N), and yz = G(n)d(r) = $(nr) € (N). Then, $(N) is an
ideal of ¢(R).

6. If N’ is an ideal of R’ then it is also an ideal of ¢(R). So we suppose N’ is an
ideal of ¢(R). Then ¢~!(N’) is an additive subgroup of R. Let r € R,n € ¢~ *(N'),
5(r) € S(R) and ¢(n) € N'. Then ¢(rn) = 3(r)o(n) € N', ¢(nr) = p(n)d(r) € V"
Then rn,nr € ¢~1(N'). Tt follows that ¢~!(N’) is an ideal of R.

8.2 First isomorphism theorem

Proposition 8.2 (First isomorphism theorem, Artin 11.4.2, Fraleigh 7th 26.17, 8th
30.17). Let ¢ : R — R’ be a ring homomorphism. Then ¢~1(0) C R is an ideal.
Moreover, ¢ induces ¢ : R/¢~1(0) — ¢(R), which is an isomorphism and which
satisfies the following commutative diagram.:

More generally, given ideal I C ¢~1(0), there exists a unique ¢ : R/I — R’
satisfying ¢ = ¢ o, where ™ : R — R/I is the natural surjection r s v+ I.

PROOF. Let ¢ : R — R’ be a ring homomorphism. That ¢~1(0) C R is an ideal
follows from part 6 of the previous proposition. By the group version of the 1st
isomorphism theorem, ¢ induces ¢ : R/¢~1(0) — ¢(R), which is an additive group
isomorphism, such that ¢(7) = ¢(r) for each r € R. It remains to show that ¢ is
a ring homomorphism. Clearly, ¢(1g) = ¢(1g) = 1g. For r,7’ € R, ¢(F - 17) =
o(rr’) = ¢(rr') = d(r)p(r') = d(F)d(r’). Then ¢ is a ring isomorphism.

The second statement is proved by defining ¢(7) = ¢(r) and verifying that ¢ is

well-defined and is a ring homomorphism satisfying ¢ = ¢ o 7.

8.3 Correspondence theorem

The following theorem is called the correspondence theorem, or the fourth isomor-

phism theorem, and is quite useful in identifying rings.

Proposition 8.3 (Artin 11.4.3). Let ¢ : R — R’ be a surjective homomorphism
with kernel K. Then there is an order-preserving bijection between

{Ideals of R containing K} +— {Ideals of R'}, given by

a: I ¢(I), and B: ¢ LI") <= I’

Moreover, R/I ~ R'/I' if I <+ I'.



PROOF. Let ¢ : R — R’ be a surjective homomorphism with kernel K. Let S ={I:
I is an ideal of R containing K}, and S’ ={I’: I’ is an ideal of R'}. For I € S, ¢(I)
is an ideal of R’ by property 5 in 8.1. Then « : I +— ¢(I) defines a map from S to S’
For I' € S, ¢~ 1(I') is an ideal of R by property 6 in 8.1. Clearly K C ¢~!(I’). Then
[ defines a map from S’ to S. For I} C Iy, I1, Iy € S, a(l1) = ¢(I1) C ¢(I2) = a(l2).
Therefore, « is order-preserving. Similarly, 8 is also order-preserving.

For I € S, Boa(l) = ¢ Hp(I)) D I. For a € ¢~ (¢(I)), ¢(a) € ¢(I). Then
there exists some b € I such that ¢(a) = ¢(b). Then ¢(a—b) =0anda—be K C I.
Then a = a—b+b € I. Therefore, Boa(I) = ¢~ (¢(I)) = I. Since I was arbitrarily
chosen, oo =idg.

For I' € ', aoB(I') = p(¢~1(I')) = I'Np(R) = I'MR’ = I’ since ¢ is surjective.
Then a o ﬁ = idsl.

Therefore, o and ( defines a correspondence (i.e. bijection) between S and S’.

For I € S, let I' = «(I). Then the natural projection © : R' — R'/I' is
a surjective ring homomorphism. Since ¢ is also a surjective homomorphism, so
isyY :=mo¢: R — R/I' Let r € R. Then r € ker(v)) <= w(¢(r)) =
0 <= ¢(r) eI’ < r e pB(I') = Pa(I) = I. Then ker(¢yp) = I. Since 1 is a
surjective ring homomorphism, 9 induces a ring isomorphism ¢ : R/I — R'/I' by

T (r) = o ¢(r) = (7).

Exercise 1. (Artin Q11.4.3) Identify the following rings: (a) Z[z]/(z? — 3,2z +
4), (b) Z[i]/(2+1), (¢) Z[x]/(6,22—1), (d)Z[x] /(222 —4, 42 —5), (e) Z[z]/(z*+3,5).

Our strategy is to use the correspondence theorem, which states that if ¢ : R —
R’ is surjective, and I D ker(¢), then R/I ~ R'/¢(I). We will often choose ker(¢)
to be (z —r) or (m) for some r,m € Z.

There is a useful property of a surjective homomorphism ¢: ¢((x1,z2, ..., T,)) =
(¢(x1), d(z2), ..., d(xy)). The proof is straightforward, and we will use this without
further explanation.

Answer. (a) Let R = Z[z], I = (2? — 3,22 +4). Then 22? + 4z € I, 4z +6 =
22%+4x—2(2*-3) € I, and 2 = 2(22+4)—(4x—6) € I. Let R’ = R/(2) = Fa[z]. Let
# : R — R’ be the natural projection. Then ¢(I) = (¢(2% —3), p(2x+4)) = (22 +1),



and I D ker(¢) = (2). Then I corresponds to ¢(I) as in the correspondence theorem,
so R/I ~ R'/¢(I) = Falx]/(x® + 1) = Fa[z]/(z + 1)2.

(b) Let R = Z[z]. The evaluation homomorphism ¢ : Z[z] — Z[i] with ¢(z) =1
is surjective with ker(¢) = (22 +1). Let I = (2% + 1,2 + z), then I D ker(¢) and
¢(I) = (0,24 ). Then by the correspondence theorem, R/I ~ Z[i]/(2 + 7).

Let ¢ : R — Z be the evaluation map such that ¢(x) = —2. Then ¥ is surjective,
ker()) = (z+2) C I, and ¢(I) = ((—2)%2 +1,—2+2) = (5). By the correspondence
theorem, R/I ~ Z/(5) ~ Fs.

(c) Let R = Z[z], and I = (6,2z — 1). Then 3 = 6x — 3(2x — 1) € I. Let
R’ = Fs[z] and ¢ : R — R’ be the natural projection. Then ker(¢) = (3) C I,
and ¢(I) = (0,—z — 1) = (z + 1). Then by the correspondence theorem, R/I ~
Fs[z]/(z + 1) ~ Fs.

(d) Let R = Z[z], and I = (222 — 4,4x — 5). Then 5z — 8 = 2(22% — 4) —
x(4r —5) € I. Then x —3 = bz —8 — (4o —5) € I. Let ¢ : R — 7Z be the
evaluation map with ¢(z) = 3. Then ker(¢) = (x — 3) C I, ¢ is surjective, and
#(I) = (2-3%2 —4,4-3 —5) = (14,7) = (7). By the correspondence theorem,
R/I ~7/(7) ~ Fr.

(e) Let R = Z[x], I = (2%2+3,5), and let ¢ : R — F5[z] be the natural projection.
Then ker(¢) = (5) C I, and ¢(I) = (2 + 3,0). By the correspondence theorem,
Zfe) /T ~ Fs[a] /(22 + 3).

Note that 2 + 3 is irreducible, F5[x]/(2? + 3) is a field of 25 elements, that is
Zlx) /I ~ Fas.

Exercise 2. (Artin Q11.4.4) Are the rings Z[z]/(2? + 7) and Z[z]/(22? + 7)

isomorphic?

PrOOF. No. The two rings are not isomorphic. We give a proof.

Suppose there is a ring isomorphism ¢ : Z[z]/(22% + 7) — Z[z]/(2* + 7). Then
#(1) = 1, and ¢(x) = ax + b for some a,b € Z. Then 0 = ¢(22% + 7) = 2(ax +
b)2 + 7 = 2a%z? + dabx + 2% + 7 = 4abx + 2b% + 7 — 14a® in Z[z]/(2% + 7). Then
dab = 2b*> + 7 — 14a® = 0. Since a,b € Z, 14a®> = 26> + 7 > 0. Then a # 0. Then
b =0 by 4ab = 0, and so 7 = 14a?. There is no solution where a € Z. Contradiction

arises. Therefore, the two rings are not isomorphic.
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