MATH3030 Tutorial 8 (Online)

J. SHEN

9 November, 2023

8 Basic theorems of ring theory

8.1 Properties of ring homomorphisms

Proposition 8.1 (Fraleigh 8th ed. thm 30.11). Let R be a ring (with 1, not assuming commutativity). Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then

1. $\phi(0)=0$
2. For any $a \in R, \phi(-a)=-\phi(a)$.
3. If S is a subring of R, then $\phi(S)$ is a subring of R^{\prime}
4. If S^{\prime} is a subring of R^{\prime}, then $\phi^{-1}\left(S^{\prime}\right)$ is a subring of R.
5. If N is an ideal of R, then $\phi(N)$ is an ideal of $\phi(R)$.
6. If N^{\prime} is an ideal of either R^{\prime} or $\phi(R)$, then $\phi^{-1}\left(N^{\prime}\right)$ is an ideal of R. (Ideals mean two-sided ideals.)

Proof.

8.2 First isomorphism theorem

Proposition 8.2 (First isomorphism theorem, Artin 11.4.2, Fraleigh 7th 26.17, 8th 30.17). Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then $\phi^{-1}(0) \subseteq R$ is an ideal. Moreover, ϕ induces $\bar{\phi}: R / \phi^{-1}(0) \rightarrow \phi(R)$, which is an isomorphism and which satisfies the following commutative diagram:

More generally, given ideal $I \subseteq \phi^{-1}(0)$, there exists a unique $\bar{\phi}: R / I \rightarrow R^{\prime}$ satisfying $\phi=\bar{\phi} \circ \pi$, where $\pi: R \rightarrow R / I$ is the natural surjection $r \mapsto r+I$.

8.3 Correspondence theorem

The following theorem is called the correspondence theorem, or the fourth isomorphism theorem, and is quite useful in identifying rings.

Proposition 8.3 (Artin 11.4.3). Let $\phi: R \rightarrow R^{\prime}$ be a surjective homomorphism with kernel K. Then there is an order-preserving bijection between
$\{$ Ideals of R containing $K\} \longleftrightarrow\left\{\right.$ Ideals of $\left.R^{\prime}\right\}$, given by
$\alpha: I \mapsto \phi(I)$, and $\beta: \phi^{-1}\left(I^{\prime}\right) \leftarrow I^{\prime}$
Moreover, $R / I \simeq R^{\prime} / I^{\prime}$ if $I \leftrightarrow I^{\prime}$.

Exercise 1. (Artin Q11.4.3) Identify the following rings: (a) $\mathbb{Z}[x] /\left(x^{2}-3,2 x+\right.$ 4), (b) $\mathbb{Z}[i] /(2+i)$, (c) $\mathbb{Z}[x] /(6,2 x-1)$, (d) $\mathbb{Z}[x] /\left(2 x^{2}-4,4 x-5\right)$, (e) $\mathbb{Z}[x] /\left(x^{2}+3,5\right)$. Exercise 2. (Artin Q11.4.4) Are the rings $\mathbb{Z}[x] /\left(x^{2}+7\right)$ and $\mathbb{Z}[x] /\left(2 x^{2}+7\right)$ isomorphic?

MATH3030 Tutorial 8 (Online)

J. SHEN

9 November, 2023

8 Basic theorems of ring theory

8.1 Properties of ring homomorphisms

Proposition 8.1 (Fraleigh 8th ed. thm 30.11). Let R be a ring (with 1, not assuming commutativity). Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then

1. $\phi(0)=0$
2. For any $a \in R, \phi(-a)=-\phi(a)$.
3. If S is a subring of R, then $\phi(S)$ is a subring of R^{\prime}
4. If S^{\prime} is a subring of R^{\prime}, then $\phi^{-1}\left(S^{\prime}\right)$ is a subring of R.
5. If N is an ideal of R, then $\phi(N)$ is an ideal of $\phi(R)$.
6. If N^{\prime} is an ideal of either R^{\prime} or $\phi(R)$, then $\phi^{-1}\left(N^{\prime}\right)$ is an ideal of R. (Ideals mean two-sided ideals.)

Proof. Property 1 and 2 follows from $\phi:(R,+) \rightarrow\left(R^{\prime},+^{\prime}\right)$ being a group homomorphism.
3. Since S is a subring of R, it is closed under,$- \times$, and $1_{R} \in S$. Then for $x, y \in \phi(S)$, there exist $a, b \in S$ such that $\phi(a)=x, \phi(b)=y$. Then $a-b, a b \in S$, and so $x-y=\phi(a-b) \in \phi(S)$, and $x y=\phi(a b) \in \phi(S)$. Moreover, $1_{R^{\prime}}=\phi\left(1_{R}\right) \in \phi(S)$. It follows that $\phi(S)$ is a subring of R^{\prime}.
4. Let S^{\prime} be a subring of R^{\prime}. Then it is closed under,$- \times$, and $1_{R^{\prime}} \in S^{\prime}$. For $a, b \in \phi^{-1}\left(S^{\prime}\right), \phi(a), \phi(b) \in S^{\prime}$. Then $\phi(a-b)=\phi(a)-\phi(b) \in S^{\prime}$ and $\phi(a b)=$ $\phi(a) \phi(b) \in S^{\prime}$. Since $\phi\left(1_{R}\right)=1_{R^{\prime}} \in S^{\prime}, 1_{R} \in \phi^{-1}\left(S^{\prime}\right)$. Therefore, $\phi^{-1}\left(S^{\prime}\right)$ is a subring of R.
5. Since N is an ideal of R, it is an additive subgroup of R, and for $r \in R$, $n \in N, r n, n r \in N$. Then $\phi(N)$ is an additive subgroup of $\phi(R)$ and for $x \in \phi(R)$, $y \in \phi(N)$, there exists $r \in R, n \in N$ such that $\phi(r)=x, \phi(n)=y$. Then $x y=$
$\phi(r) \phi(n)=\phi(r n) \in \phi(N)$, and $y x=\phi(n) \phi(r)=\phi(n r) \in \phi(N)$. Then, $\phi(N)$ is an ideal of $\phi(R)$.
6. If N^{\prime} is an ideal of R^{\prime}, then it is also an ideal of $\phi(R)$. So we suppose N^{\prime} is an ideal of $\phi(R)$. Then $\phi^{-1}\left(N^{\prime}\right)$ is an additive subgroup of R. Let $r \in R, n \in \phi^{-1}\left(N^{\prime}\right)$, $\phi(r) \in \phi(R)$ and $\phi(n) \in N^{\prime}$. Then $\phi(r n)=\phi(r) \phi(n) \in N^{\prime}, \phi(n r)=\phi(n) \phi(r) \in N^{\prime}$. Then $r n, n r \in \phi^{-1}\left(N^{\prime}\right)$. It follows that $\phi^{-1}\left(N^{\prime}\right)$ is an ideal of R.

8.2 First isomorphism theorem

Proposition 8.2 (First isomorphism theorem, Artin 11.4.2, Fraleigh 7th 26.17, 8th 30.17). Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then $\phi^{-1}(0) \subseteq R$ is an ideal. Moreover, ϕ induces $\bar{\phi}: R / \phi^{-1}(0) \rightarrow \phi(R)$, which is an isomorphism and which satisfies the following commutative diagram:

More generally, given ideal $I \subseteq \phi^{-1}(0)$, there exists a unique $\bar{\phi}: R / I \rightarrow R^{\prime}$ satisfying $\phi=\bar{\phi} \circ \pi$, where $\pi: R \rightarrow R / I$ is the natural surjection $r \mapsto r+I$.

Proof. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. That $\phi^{-1}(0) \subseteq R$ is an ideal follows from part 6 of the previous proposition. By the group version of the 1st isomorphism theorem, ϕ induces $\bar{\phi}: R / \phi^{-1}(0) \rightarrow \phi(R)$, which is an additive group isomorphism, such that $\bar{\phi}(\bar{r})=\phi(r)$ for each $r \in R$. It remains to show that $\bar{\phi}$ is a ring homomorphism. Clearly, $\bar{\phi}\left(\overline{1_{R}}\right)=\phi\left(1_{R}\right)=1_{R^{\prime}}$. For $r, r^{\prime} \in R, \bar{\phi}\left(\bar{r} \cdot \overline{r^{\prime}}\right)=$ $\bar{\phi}\left(\overline{r r^{\prime}}\right)=\phi\left(r r^{\prime}\right)=\phi(r) \phi\left(r^{\prime}\right)=\bar{\phi}(\bar{r}) \bar{\phi}\left(\overline{r^{\prime}}\right)$. Then ϕ is a ring isomorphism.

The second statement is proved by defining $\bar{\phi}(\bar{r})=\phi(r)$ and verifying that $\bar{\phi}$ is well-defined and is a ring homomorphism satisfying $\phi=\bar{\phi} \circ \pi$.

8.3 Correspondence theorem

The following theorem is called the correspondence theorem, or the fourth isomorphism theorem, and is quite useful in identifying rings.

Proposition 8.3 (Artin 11.4.3). Let $\phi: R \rightarrow R^{\prime}$ be a surjective homomorphism with kernel K. Then there is an order-preserving bijection between
$\{$ Ideals of R containing $K\} \longleftrightarrow$ \{Ideals of $\left.R^{\prime}\right\}$, given by
$\alpha: I \mapsto \phi(I)$, and $\beta: \phi^{-1}\left(I^{\prime}\right) \leftrightarrow I^{\prime}$
Moreover, $R / I \simeq R^{\prime} / I^{\prime}$ if $I \leftrightarrow I^{\prime}$.

Proof. Let $\phi: R \rightarrow R^{\prime}$ be a surjective homomorphism with kernel K. Let $S=\{I$: I is an ideal of R containing $K\}$, and $S^{\prime}=\left\{I^{\prime}: I^{\prime}\right.$ is an ideal of $\left.R^{\prime}\right\}$. For $I \in S, \phi(I)$ is an ideal of R^{\prime} by property 5 in 8.1. Then $\alpha: I \mapsto \phi(I)$ defines a map from S to S^{\prime}. For $I^{\prime} \in S^{\prime}, \phi^{-1}\left(I^{\prime}\right)$ is an ideal of R by property 6 in 8.1. Clearly $K \subseteq \phi^{-1}\left(I^{\prime}\right)$. Then β defines a map from S^{\prime} to S. For $I_{1} \subseteq I_{2}, I_{1}, I_{2} \in S, \alpha\left(I_{1}\right)=\phi\left(I_{1}\right) \subseteq \phi\left(I_{2}\right)=\alpha\left(I_{2}\right)$. Therefore, α is order-preserving. Similarly, β is also order-preserving.

For $I \in S, \beta \circ \alpha(I)=\phi^{-1}(\phi(I)) \supseteq I$. For $a \in \phi^{-1}(\phi(I)), \phi(a) \in \phi(I)$. Then there exists some $b \in I$ such that $\phi(a)=\phi(b)$. Then $\phi(a-b)=0$ and $a-b \in K \subseteq I$. Then $a=a-b+b \in I$. Therefore, $\beta \circ \alpha(I)=\phi^{-1}(\phi(I))=I$. Since I was arbitrarily chosen, $\beta \circ \alpha=\mathrm{id}_{S}$.

For $I^{\prime} \in S^{\prime}, \alpha \circ \beta\left(I^{\prime}\right)=\phi\left(\phi^{-1}\left(I^{\prime}\right)\right)=I^{\prime} \cap \phi(R)=I^{\prime} \cap R^{\prime}=I^{\prime}$ since ϕ is surjective. Then $\alpha \circ \beta=\mathrm{id}_{S^{\prime}}$.

Therefore, α and β defines a correspondence (i.e. bijection) between S and S^{\prime}.
For $I \in S$, let $I^{\prime}=\alpha(I)$. Then the natural projection $\pi: R^{\prime} \rightarrow R^{\prime} / I^{\prime}$ is a surjective ring homomorphism. Since ϕ is also a surjective homomorphism, so is $\psi:=\pi \circ \phi: R \rightarrow R^{\prime} / I^{\prime}$. Let $r \in R$. Then $r \in \operatorname{ker}(\psi) \Longleftrightarrow \pi(\phi(r))=$ $0 \Longleftrightarrow \phi(r) \in I^{\prime} \Longleftrightarrow r \in \beta\left(I^{\prime}\right)=\beta \alpha(I)=I$. Then $\operatorname{ker}(\psi)=I$. Since ψ is a surjective ring homomorphism, ψ induces a ring isomorphism $\bar{\psi}: R / I \rightarrow R^{\prime} / I^{\prime}$ by $\bar{r} \mapsto \psi(r)=\pi \circ \phi(r)=\overline{\phi(r)}$.

Exercise 1. (Artin Q11.4.3) Identify the following rings: (a) $\mathbb{Z}[x] /\left(x^{2}-3,2 x+\right.$ 4),
(b) $\mathbb{Z}[i] /(2+i)$,
(c) $\mathbb{Z}[x] /(6,2 x-1)$,
(d) $\mathbb{Z}[x] /\left(2 x^{2}-4,4 x-5\right)$,
(e) $\mathbb{Z}[x] /\left(x^{2}+3,5\right)$.

Our strategy is to use the correspondence theorem, which states that if $\phi: R \rightarrow$ R^{\prime} is surjective, and $I \supset \operatorname{ker}(\phi)$, then $R / I \simeq R^{\prime} / \phi(I)$. We will often choose $\operatorname{ker}(\phi)$ to be $(x-r)$ or (m) for some $r, m \in \mathbb{Z}$.

There is a useful property of a surjective homomorphism $\phi: \phi\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right), \ldots, \phi\left(x_{n}\right)\right)$. The proof is straightforward, and we will use this without further explanation.

Answer. (a) Let $R=\mathbb{Z}[x], I=\left(x^{2}-3,2 x+4\right)$. Then $2 x^{2}+4 x \in I, 4 x+6=$ $2 x^{2}+4 x-2\left(x^{2}-3\right) \in I$, and $2=2(2 x+4)-(4 x-6) \in I$. Let $R^{\prime}=R /(2)=\mathbb{F}_{2}[x]$. Let $\phi: R \rightarrow R^{\prime}$ be the natural projection. Then $\phi(I)=\left(\phi\left(x^{2}-3\right), \phi(2 x+4)\right)=\left(x^{2}+1\right)$,
and $I \supseteq \operatorname{ker}(\phi)=(2)$. Then I corresponds to $\phi(I)$ as in the correspondence theorem, so $R / I \simeq R^{\prime} / \phi(I)=\mathbb{F}_{2}[x] /\left(x^{2}+1\right)=\mathbb{F}_{2}[x] /(x+1)^{2}$.
(b) Let $R=\mathbb{Z}[x]$. The evaluation homomorphism $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}[i]$ with $\phi(x)=i$ is surjective with $\operatorname{ker}(\phi)=\left(x^{2}+1\right)$. Let $I=\left(x^{2}+1,2+x\right)$, then $I \supseteq \operatorname{ker}(\phi)$ and $\phi(I)=(0,2+i)$. Then by the correspondence theorem, $R / I \simeq \mathbb{Z}[i] /(2+i)$.

Let $\psi: R \rightarrow \mathbb{Z}$ be the evaluation map such that $\phi(x)=-2$. Then ψ is surjective, $\operatorname{ker}(\psi)=(x+2) \subseteq I$, and $\phi(I)=\left((-2)^{2}+1,-2+2\right)=(5)$. By the correspondence theorem, $R / I \simeq \mathbb{Z} /(5) \simeq \mathbb{F}_{5}$.
(c) Let $R=\mathbb{Z}[x]$, and $I=(6,2 x-1)$. Then $3=6 x-3(2 x-1) \in I$. Let $R^{\prime}=\mathbb{F}_{3}[x]$ and $\phi: R \rightarrow R^{\prime}$ be the natural projection. Then $\operatorname{ker}(\phi)=(3) \subseteq I$, and $\phi(I)=(0,-x-1)=(x+1)$. Then by the correspondence theorem, $R / I \simeq$ $\mathbb{F}_{3}[x] /(x+1) \simeq \mathbb{F}_{3}$.
(d) Let $R=\mathbb{Z}[x]$, and $I=\left(2 x^{2}-4,4 x-5\right)$. Then $5 x-8=2\left(2 x^{2}-4\right)-$ $x(4 x-5) \in I$. Then $x-3=5 x-8-(4 x-5) \in I$. Let $\phi: R \rightarrow \mathbb{Z}$ be the evaluation map with $\phi(x)=3$. Then $\operatorname{ker}(\phi)=(x-3) \subseteq I, \phi$ is surjective, and $\phi(I)=\left(2 \cdot 3^{2}-4,4 \cdot 3-5\right)=(14,7)=(7)$. By the correspondence theorem, $R / I \simeq \mathbb{Z} /(7) \simeq \mathbb{F}_{7}$.
(e) Let $R=\mathbb{Z}[x], I=\left(x^{2}+3,5\right)$, and let $\phi: R \rightarrow \mathbb{F}_{5}[x]$ be the natural projection. Then $\operatorname{ker}(\phi)=(5) \subseteq I$, and $\phi(I)=\left(x^{2}+3,0\right)$. By the correspondence theorem, $\mathbb{Z}[x] / I \simeq \mathbb{F}_{5}[x] /\left(x^{2}+3\right)$.

Note that $x^{2}+3$ is irreducible, $\mathbb{F}_{5}[x] /\left(x^{2}+3\right)$ is a field of 25 elements, that is $\mathbb{Z}[x] / I \simeq \mathbb{F}_{25}$.

Exercise 2. (Artin Q11.4.4) Are the rings $\mathbb{Z}[x] /\left(x^{2}+7\right)$ and $\mathbb{Z}[x] /\left(2 x^{2}+7\right)$ isomorphic?

Proof. No. The two rings are not isomorphic. We give a proof.
Suppose there is a ring isomorphism $\phi: \mathbb{Z}[x] /\left(2 x^{2}+7\right) \rightarrow \mathbb{Z}[x] /\left(x^{2}+7\right)$. Then $\phi(1)=1$, and $\phi(x)=a x+b$ for some $a, b \in \mathbb{Z}$. Then $0=\phi\left(2 x^{2}+7\right)=2(a x+$ $b)^{2}+7=2 a^{2} x^{2}+4 a b x+2 b^{2}+7=4 a b x+2 b^{2}+7-14 a^{2}$ in $\mathbb{Z}[x] /\left(x^{2}+7\right)$. Then $4 a b=2 b^{2}+7-14 a^{2}=0$. Since $a, b \in \mathbb{Z}, 14 a^{2}=2 b^{2}+7>0$. Then $a \neq 0$. Then $b=0$ by $4 a b=0$, and so $7=14 a^{2}$. There is no solution where $a \in \mathbb{Z}$. Contradiction arises. Therefore, the two rings are not isomorphic.

