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8 Basic theorems of ring theory

8.1 Properties of ring homomorphisms

Proposition 8.1 (Fraleigh 8th ed. thm 30.11). Let R be a ring (with 1, not assuming
commutativity). Let ϕ : R→ R′ be a ring homomorphism. Then

1. ϕ(0) = 0

2. For any a ∈ R, ϕ(−a) = −ϕ(a).

3. If S is a subring of R, then ϕ(S) is a subring of R′

4. If S′ is a subring of R′, then ϕ−1(S′) is a subring of R.

5. If N is an ideal of R, then ϕ(N) is an ideal of ϕ(R).

6. If N ′ is an ideal of either R′ or ϕ(R), then ϕ−1(N ′) is an ideal of R. (Ideals
mean two-sided ideals.)

Proof.
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8.2 First isomorphism theorem

Proposition 8.2 (First isomorphism theorem, Artin 11.4.2, Fraleigh 7th 26.17, 8th

30.17). Let ϕ : R → R′ be a ring homomorphism. Then ϕ−1(0) ⊆ R is an ideal.

Moreover, ϕ induces ϕ : R/ϕ−1(0) → ϕ(R), which is an isomorphism and which

satisfies the following commutative diagram:

More generally, given ideal I ⊆ ϕ−1(0), there exists a unique ϕ : R/I → R′

satisfying ϕ = ϕ ◦ π, where π : R→ R/I is the natural surjection r 7→ r + I.
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8.3 Correspondence theorem

The following theorem is called the correspondence theorem, or the fourth isomor-

phism theorem, and is quite useful in identifying rings.

Proposition 8.3 (Artin 11.4.3). Let ϕ : R → R′ be a surjective homomorphism

with kernel K. Then there is an order-preserving bijection between

{Ideals of R containing K} ←→ {Ideals of R′}, given by

α : I 7→ ϕ(I), and β : ϕ−1(I ′)← [ I ′

Moreover, R/I ≃ R′/I ′ if I ↔ I ′.
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Exercise 1. (Artin Q11.4.3) Identify the following rings: (a) Z[x]/(x2−3, 2x+

4), (b) Z[i]/(2+i), (c) Z[x]/(6, 2x−1), (d)Z[x]/(2x2−4, 4x−5), (e) Z[x]/(x2+3, 5).

Exercise 2. (Artin Q11.4.4) Are the rings Z[x]/(x2 + 7) and Z[x]/(2x2 + 7)

isomorphic?
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Proof. Property 1 and 2 follows from ϕ : (R,+) → (R′,+′) being a group homo-

morphism.

3. Since S is a subring of R, it is closed under −,×, and 1R ∈ S. Then for

x, y ∈ ϕ(S), there exist a, b ∈ S such that ϕ(a) = x, ϕ(b) = y. Then a−b, ab ∈ S, and
so x− y = ϕ(a− b) ∈ ϕ(S), and xy = ϕ(ab) ∈ ϕ(S). Moreover, 1R′ = ϕ(1R) ∈ ϕ(S).
It follows that ϕ(S) is a subring of R′.

4. Let S′ be a subring of R′. Then it is closed under −,×, and 1R′ ∈ S′. For

a, b ∈ ϕ−1(S′), ϕ(a), ϕ(b) ∈ S′. Then ϕ(a − b) = ϕ(a) − ϕ(b) ∈ S′ and ϕ(ab) =

ϕ(a)ϕ(b) ∈ S′. Since ϕ(1R) = 1R′ ∈ S′, 1R ∈ ϕ−1(S′). Therefore, ϕ−1(S′) is a

subring of R.

5. Since N is an ideal of R, it is an additive subgroup of R, and for r ∈ R,

n ∈ N , rn, nr ∈ N . Then ϕ(N) is an additive subgroup of ϕ(R) and for x ∈ ϕ(R),
y ∈ ϕ(N), there exists r ∈ R,n ∈ N such that ϕ(r) = x, ϕ(n) = y. Then xy =
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ϕ(r)ϕ(n) = ϕ(rn) ∈ ϕ(N), and yx = ϕ(n)ϕ(r) = ϕ(nr) ∈ ϕ(N). Then, ϕ(N) is an

ideal of ϕ(R).

6. If N ′ is an ideal of R′, then it is also an ideal of ϕ(R). So we suppose N ′ is an

ideal of ϕ(R). Then ϕ−1(N ′) is an additive subgroup of R. Let r ∈ R,n ∈ ϕ−1(N ′),

ϕ(r) ∈ ϕ(R) and ϕ(n) ∈ N ′. Then ϕ(rn) = ϕ(r)ϕ(n) ∈ N ′, ϕ(nr) = ϕ(n)ϕ(r) ∈ N ′.

Then rn, nr ∈ ϕ−1(N ′). It follows that ϕ−1(N ′) is an ideal of R.

8.2 First isomorphism theorem

Proposition 8.2 (First isomorphism theorem, Artin 11.4.2, Fraleigh 7th 26.17, 8th

30.17). Let ϕ : R → R′ be a ring homomorphism. Then ϕ−1(0) ⊆ R is an ideal.

Moreover, ϕ induces ϕ : R/ϕ−1(0) → ϕ(R), which is an isomorphism and which

satisfies the following commutative diagram:

More generally, given ideal I ⊆ ϕ−1(0), there exists a unique ϕ : R/I → R′

satisfying ϕ = ϕ ◦ π, where π : R→ R/I is the natural surjection r 7→ r + I.

Proof. Let ϕ : R → R′ be a ring homomorphism. That ϕ−1(0) ⊆ R is an ideal

follows from part 6 of the previous proposition. By the group version of the 1st

isomorphism theorem, ϕ induces ϕ : R/ϕ−1(0) → ϕ(R), which is an additive group

isomorphism, such that ϕ(r) = ϕ(r) for each r ∈ R. It remains to show that ϕ is

a ring homomorphism. Clearly, ϕ(1R) = ϕ(1R) = 1R′ . For r, r′ ∈ R, ϕ(r · r′) =

ϕ(rr′) = ϕ(rr′) = ϕ(r)ϕ(r′) = ϕ(r)ϕ(r′). Then ϕ is a ring isomorphism.

The second statement is proved by defining ϕ(r) = ϕ(r) and verifying that ϕ is

well-defined and is a ring homomorphism satisfying ϕ = ϕ ◦ π.

8.3 Correspondence theorem

The following theorem is called the correspondence theorem, or the fourth isomor-

phism theorem, and is quite useful in identifying rings.

Proposition 8.3 (Artin 11.4.3). Let ϕ : R → R′ be a surjective homomorphism

with kernel K. Then there is an order-preserving bijection between

{Ideals of R containing K} ←→ {Ideals of R′}, given by

α : I 7→ ϕ(I), and β : ϕ−1(I ′)← [ I ′

Moreover, R/I ≃ R′/I ′ if I ↔ I ′.
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Proof. Let ϕ : R→ R′ be a surjective homomorphism with kernel K. Let S ={I:
I is an ideal of R containing K}, and S′ ={I ′: I ′ is an ideal of R′}. For I ∈ S, ϕ(I)
is an ideal of R′ by property 5 in 8.1. Then α : I 7→ ϕ(I) defines a map from S to S′.

For I ′ ∈ S′, ϕ−1(I ′) is an ideal of R by property 6 in 8.1. Clearly K ⊆ ϕ−1(I ′). Then

β defines a map from S′ to S. For I1 ⊆ I2, I1, I2 ∈ S, α(I1) = ϕ(I1) ⊆ ϕ(I2) = α(I2).

Therefore, α is order-preserving. Similarly, β is also order-preserving.

For I ∈ S, β ◦ α(I) = ϕ−1(ϕ(I)) ⊇ I. For a ∈ ϕ−1(ϕ(I)), ϕ(a) ∈ ϕ(I). Then

there exists some b ∈ I such that ϕ(a) = ϕ(b). Then ϕ(a−b) = 0 and a−b ∈ K ⊆ I.
Then a = a−b+b ∈ I. Therefore, β ◦α(I) = ϕ−1(ϕ(I)) = I. Since I was arbitrarily

chosen, β ◦ α = idS .

For I ′ ∈ S′, α◦β(I ′) = ϕ(ϕ−1(I ′)) = I ′∩ϕ(R) = I ′∩R′ = I ′ since ϕ is surjective.

Then α ◦ β = idS′ .

Therefore, α and β defines a correspondence (i.e. bijection) between S and S′.

For I ∈ S, let I ′ = α(I). Then the natural projection π : R′ → R′/I ′ is

a surjective ring homomorphism. Since ϕ is also a surjective homomorphism, so

is ψ := π ◦ ϕ : R → R′/I ′. Let r ∈ R. Then r ∈ ker(ψ) ⇐⇒ π(ϕ(r)) =

0 ⇐⇒ ϕ(r) ∈ I ′ ⇐⇒ r ∈ β(I ′) = βα(I) = I. Then ker(ψ) = I. Since ψ is a

surjective ring homomorphism, ψ induces a ring isomorphism ψ : R/I → R′/I ′ by

r 7→ ψ(r) = π ◦ ϕ(r) = ϕ(r).

Exercise 1. (Artin Q11.4.3) Identify the following rings: (a) Z[x]/(x2−3, 2x+

4), (b) Z[i]/(2+i), (c) Z[x]/(6, 2x−1), (d)Z[x]/(2x2−4, 4x−5), (e) Z[x]/(x2+3, 5).

Our strategy is to use the correspondence theorem, which states that if ϕ : R→
R′ is surjective, and I ⊃ ker(ϕ), then R/I ≃ R′/ϕ(I). We will often choose ker(ϕ)

to be (x− r) or (m) for some r,m ∈ Z.
There is a useful property of a surjective homomorphism ϕ: ϕ((x1, x2, ..., xn)) =

(ϕ(x1), ϕ(x2), ..., ϕ(xn)). The proof is straightforward, and we will use this without

further explanation.

Answer. (a) Let R = Z[x], I = (x2 − 3, 2x+ 4). Then 2x2 + 4x ∈ I, 4x+ 6 =

2x2+4x−2(x2−3) ∈ I, and 2 = 2(2x+4)−(4x−6) ∈ I. Let R′ = R/(2) = F2[x]. Let

ϕ : R→ R′ be the natural projection. Then ϕ(I) = (ϕ(x2−3), ϕ(2x+4)) = (x2+1),
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and I ⊇ ker(ϕ) = (2). Then I corresponds to ϕ(I) as in the correspondence theorem,

so R/I ≃ R′/ϕ(I) = F2[x]/(x
2 + 1) = F2[x]/(x+ 1)2.

(b) Let R = Z[x]. The evaluation homomorphism ϕ : Z[x]→ Z[i] with ϕ(x) = i

is surjective with ker(ϕ) = (x2 + 1). Let I = (x2 + 1, 2 + x), then I ⊇ ker(ϕ) and

ϕ(I) = (0, 2 + i). Then by the correspondence theorem, R/I ≃ Z[i]/(2 + i).

Let ψ : R→ Z be the evaluation map such that ϕ(x) = −2. Then ψ is surjective,

ker(ψ) = (x+ 2) ⊆ I, and ϕ(I) = ((−2)2 + 1,−2 + 2) = (5). By the correspondence

theorem, R/I ≃ Z/(5) ≃ F5.

(c) Let R = Z[x], and I = (6, 2x − 1). Then 3 = 6x − 3(2x − 1) ∈ I. Let

R′ = F3[x] and ϕ : R → R′ be the natural projection. Then ker(ϕ) = (3) ⊆ I,

and ϕ(I) = (0,−x − 1) = (x + 1). Then by the correspondence theorem, R/I ≃
F3[x]/(x+ 1) ≃ F3.

(d) Let R = Z[x], and I = (2x2 − 4, 4x − 5). Then 5x − 8 = 2(2x2 − 4) −
x(4x − 5) ∈ I. Then x − 3 = 5x − 8 − (4x − 5) ∈ I. Let ϕ : R → Z be the

evaluation map with ϕ(x) = 3. Then ker(ϕ) = (x − 3) ⊆ I, ϕ is surjective, and

ϕ(I) = (2 · 32 − 4, 4 · 3 − 5) = (14, 7) = (7). By the correspondence theorem,

R/I ≃ Z/(7) ≃ F7.

(e) Let R = Z[x], I = (x2+3, 5), and let ϕ : R→ F5[x] be the natural projection.

Then ker(ϕ) = (5) ⊆ I, and ϕ(I) = (x2 + 3, 0). By the correspondence theorem,

Z[x]/I ≃ F5[x]/(x
2 + 3).

Note that x2 + 3 is irreducible, F5[x]/(x
2 + 3) is a field of 25 elements, that is

Z[x]/I ≃ F25.

Exercise 2. (Artin Q11.4.4) Are the rings Z[x]/(x2 + 7) and Z[x]/(2x2 + 7)

isomorphic?

Proof. No. The two rings are not isomorphic. We give a proof.

Suppose there is a ring isomorphism ϕ : Z[x]/(2x2 + 7) → Z[x]/(x2 + 7). Then

ϕ(1) = 1, and ϕ(x) = ax + b for some a, b ∈ Z. Then 0 = ϕ(2x2 + 7) = 2(ax +

b)2 + 7 = 2a2x2 + 4abx + 2b2 + 7 = 4abx + 2b2 + 7 − 14a2 in Z[x]/(x2 + 7). Then

4ab = 2b2 + 7 − 14a2 = 0. Since a, b ∈ Z, 14a2 = 2b2 + 7 > 0. Then a ̸= 0. Then

b = 0 by 4ab = 0, and so 7 = 14a2. There is no solution where a ∈ Z. Contradiction
arises. Therefore, the two rings are not isomorphic.

4


	Basic theorems of ring theory
	Properties of ring homomorphisms
	First isomorphism theorem
	Correspondence theorem
	Basic theorems of ring theory
	Properties of ring homomorphisms
	First isomorphism theorem
	Correspondence theorem



