THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Tutorial 5 solutions
 12th October 2023

- The tutorial solutions are written for reference and proofs will be sketched briefly. You should try to fill in the details as an exercise. Please send an email to echlam@ math.cuhk.edu.hk if you have any further questions.

1. Let $N \triangleleft G, N \cap G^{\prime}=\{e\}$, pick any $n \in N$, for any $g \in G, x=g n g^{-1} n^{-1}$ is a commutator so it lies in G^{\prime}. And $g n g^{-1} \in N$ by normality, so $x \in N \cap G^{\prime}=\{e\}$. Therefore $g n=n g$ for arbitrary $g \in G$, i.e. $n \in Z(G)$.
2. (a) Define $\phi: G / H \cap K \rightarrow G / H \times G / K$ by $\phi(a H \cap K)=(a H, a K)$, this is welldefined because if $a H \cap K=b H \cap K$, then $a^{-1} b \in H \cap K$, so $a H=b K$ and $a K=b K$. It is clearly a homomorphism. Injectivity follows from that $a H \cap$ $K \in \operatorname{ker} \phi$ if and only if $a H=H$ and $a K=K$, which is equivalent to saying $a \in H \cap K \Leftrightarrow a H \cap K=H \cap K$.
(b) Let's consider the case when G is finite first. Recall that we have

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

From this, we have

$$
\begin{aligned}
\phi \text { is surjective } & \Longleftrightarrow\left|\frac{G}{H \cap K}\right|=\left|\frac{G}{H}\right| \cdot\left|\frac{G}{K}\right| \\
& \Longleftrightarrow|H K|=\frac{|H| \cdot|K|}{|H \cap K|}=|G| \\
& \Longleftrightarrow G=H K .
\end{aligned}
$$

For the case when G is infinite, we can still argue as follows. ($\Longleftarrow)$ Suppose $G=$ $H K$, given any $(a H, b K) \in G / H \times G / K$, consider $a^{-1} b \in G$, then there exists $h \in H, k \in K$ so that $a^{-1} b=h k^{-1}$, or equivalently $a h=b k$. Then we have $\phi(a h H \cap K)=(a h H, b k K)=(a H, b K)$. Therefore ϕ is surjective.
Conversely, suppose that ϕ is surjective, then in particular for any $g \in G$, there is some $a H \cap K$ so that $\phi(a H \cap K)=(H, g K)$. In this case, $a H=H$, so $a \in H$. And $a K=g K$, so $a^{-1} g=k \in K$. Therefore $g=a k \in H K$.
(c) We can pick $G=\mathbb{Z}, H=p \mathbb{Z}$ and $K=q \mathbb{Z}$. Then $H \cap K=p q \mathbb{Z}$ and the homomorphism ϕ defined in part (a) is surjective because $H K=\mathbb{Z}$, which can be seen by the fact that $\operatorname{gcd}(p, q)=1$ and so there is some $a, b \in \mathbb{Z}$ so that $a p+b q=1$ which generates \mathbb{Z}. This implies that $\phi: \mathbb{Z}_{p q} \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ is an isomorphism.
3. We can write down an explicity solvable series for B_{2}. It suffices to note that the set A of upper triangular matrices with diagonal entries equal to 1 forms an abelian normal subgroup of B_{2}, with quotient isomorphic to $\left.\mathbb{C}^{\times}\right)^{2}$.

Explicitly, write

$$
A=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{C}\right\} \leq B_{2}
$$

It is clear that A is an abelian subgroup that is isomorphic to the additive group \mathbb{C}. It is furthermore a normal subgroup, since

$$
\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & -c a^{-1} b^{-1} \\
0 & b^{-1}
\end{array}\right)
$$

and so

$$
\begin{aligned}
\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{-1} & -c a^{-1} b^{-1} \\
0 & b^{-1}
\end{array}\right) & =\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
a^{-1} & -c a^{-1} b^{-1}+b^{-1} x \\
0 & b^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & a b^{-1} x \\
0 & 1
\end{array}\right) \in A .
\end{aligned}
$$

Next, we define $\phi: B_{2} \rightarrow\left(\mathbb{C}^{\times}\right)^{2}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a, b \in \mathbb{C}^{\times}\right\}$where \mathbb{C}^{\times}denote the multiplicative group of complex numbers. We take $\phi\left(\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. It is clear that ϕ is a surjective group homomorphism, with $\operatorname{ker} \phi=A$. Therefore by first isomorphism theorem, we have $B_{2} / A \cong\left(\mathbb{C}^{\times}\right)^{2}$. Thus the series $0 \unlhd A \unlhd B_{2}$ has abelian quotient groups, so B_{2} is solvable.
4. Consider the commutator subgroup $N^{\prime}=[N, N]$, it is normal in G because for $g \in G$,

$$
g\left(n_{1} n_{2} n_{1}^{-1} n_{2}^{-1}\right) g^{-1}=\left(g n_{1} g^{-1}\right)\left(g n_{2} g^{-1}\right)\left(g n_{1} g^{-1}\right)^{-1}\left(g n_{2} g^{-1}\right)^{-1}
$$

is again a commutator, and hence lies in N^{\prime}. Here $g n_{1} g^{-1}, g n_{2} g^{-1} \in N$ by normality of N. Now by minimality of N, we have $N^{\prime}=N$ or $N=\{e\}$. The former is impossible because that implies that $N^{(k)}=N$ for all higher commutator subgroup, which means that N is not solvable, contradicting the fact that G is solvable.
Remark: Here I propose a false proof that might sound convincing, try to spot the mistake in the following argument: It is possible to obtain a composition series of G by refining the sequence $0 \unlhd N \unlhd G$. If N was not abelian, then in the refinement, one must be able to reduce N into smaller subgroup: i.e. there exists proper subgroup M of N so that the composition series obtained looks like $0 \unlhd M \unlhd \ldots \unlhd N \unlhd \ldots \unlhd G$, which contradicts with the minimality of N.
The mistake is the following: N is minimal normal subgroup of G, but in a subnormal series, M is only assumed to be normal within N, so M does not have to be a normal subgroup of G, so in fact there is no contradiction in the above.
5. No, $\mathbb{Z} \subset \mathbb{Q}$ and \mathbb{Z} has no composition series. This is easily seen by the fact that every subgroup of \mathbb{Z} is given by $k \mathbb{Z}$, so any subnormal series looks like

$$
\mathbb{Z} \supset k_{1} \mathbb{Z} \supset k_{2} \mathbb{Z} \supset \cdots \supset k_{n} \mathbb{Z} \supset 0
$$

But this is never a composition series as $k_{n} \mathbb{Z} \cong \mathbb{Z}$ is not simple.
Now \mathbb{Q} is abelian so \mathbb{Z} is a normal subgroup. Therefore we conclude that \mathbb{Q} cannot have a composition series.
6. $D_{8} \supset \mathbb{Z}_{8}=\langle r\rangle$ as a normal subgroup as it has index two. Here r denotes the generator satisfying $r^{8}=e$. Then we proceed by taking $\mathbb{Z}_{8} \supset\langle 2\rangle \supset\langle 4\rangle \supset\langle e\rangle$. This is clearly a composition series as all the quotients are isomorphic to \mathbb{Z}_{2}.
For \mathbb{Z}_{48} we proceed similarly, $48=2^{4} \cdot 3$, so we can write $\mathbb{Z}_{48} \supset\langle 2\rangle \supset\langle 4\rangle \supset\langle 8\rangle \supset$ $\langle 16\rangle \supset\langle e\rangle$.
7. Suppose G is solvable, consider G^{\prime} generated by $g h g^{-1} h^{-1}$, then $f\left(G^{\prime}\right)$ is generated by $f(g) f(h) f(g)^{-1} f(h)^{-1}$. If we run over all $g, h \in G$, we also run over all $f(g), f(h) \in$ $f(G)$, so those clearly also generates $f(G)^{\prime}$, and hence $f\left(G^{\prime}\right)=f(G)^{\prime}$. Inductively, we can see $f\left(G^{(k)}\right)=f(G)^{(k)}$. Since G is solvable, $G^{(k)}=\{e\}$ for some large enough k, this implies $f(G)^{(k)}$ is trivial for that k, whence $f(G)$ is solvable.

