THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH 3030 Abstract Algebra 2023-24 Tutorial 4 5th October 2023

- Tutorial exercise would be uploaded to blackboard on Tuesdays provided that there is a tutorial class on that Thursday. You are not required to hand in the solution, but you are advised to try the problems before tutorial classes.
- Please send an email to echlam@math.cuhk.edu.hk if you have any questions.
- 1. Recall the definition of automorphism group, can you determine the automorphism groups of \mathbb{Z}_p for prime p and \mathbb{Z} ? (Bonus: How about automorphisms of \mathbb{Z}^2 ? Hint: think about linear maps.)
- 2. Suppose G is a finite group and $T \in \operatorname{Aut}(G)$ so that $Tg = g \Leftrightarrow g = e$, prove that every $h \in G$ can be expressed as $g^{-1}(Tg)$ for some g.
- 3. Suppose G is a finite group with $T \in \operatorname{Aut}(G)$, so that $Tg = g \Leftrightarrow g = e$. Suppose further that $T^2 = \operatorname{Id}$, show that G is abelian.
- 4. Find the centers for the dihedral group D_{2n} , the symmetry group of n-gon.
- 5. We have learnt about direct product of groups in the lectures as group structure defined on a new set $G_1 \times G_2$. It is possible to make sense of direct product internally within a group as follows.

Suppose G is a group satisfying the following,

- (a) H, K are normal subgroups of G.
- (b) $H \cap K = \{e\}.$
- (c) $G = HK = \{hk \in G : h \in H, k \in K\}$

Show that $G \cong H \times K$.

• If time permits, I will cover the following extra materials in the tutorial. Note that the extra materials would **NOT** appear in the midterm nor exam.

Notes on semidirect products

In the lectures, we have encountered two notions about constructing groups from smaller pieces. The first is direct product $H \times K$, which is formed by imposing no conditions on how elements of H, K interact. In other words, we set hk = kh for any h, k. There is a second notion of a group extension that is more sophiscated. Whenever we have a short exact sequence,

$$1 \to H \to G \to K \to 1$$

i.e. an injective $\varphi_1: H \to G$ and a surjective $\varphi_2: G \to K$ together with the condition that $\operatorname{im}(\varphi_1) = \ker(\varphi_2)$. We say that G is extension of K by H. In this case, note that $H \cong \varphi(H) \cong \ker(\varphi_2)$ can be regarded as a normal subgroup of G, and by isomorphism theorem $K \cong G/\varphi_1(H)$. So in the case when H, K are finite, $|G| = |H| \cdot |K|$, and we think of H, K as building blocks of G. However, in general there is no good way of writing down the structure of G based on H, K.

Semidirect product is a middle ground between direct product and group extension. In Q6 above, one would obtain semidirect product when the condition H, K are normal subgroups is relaxed to just having H as a normal subgroup and K is a general subgroup. We use the notation $H \rtimes K$ or $K \ltimes H$ to denote semidirect products (note that this is not symmetric unlike direct product). One simple example is $G = S_3$, it is the semidirect product of the subgroups $H = \langle (123) \rangle$ and $K = \langle (12) \rangle$. Notice that K is not normal here, in particular generally we won't have the property that hk = kh like we had for direct products. For that reason, in general the isomorphism types of H, K alone is not enough to determine $H \rtimes K$, we need specific details of how they interact within a bigger group G as in the definition.

There is another way of describing the extra data by using automorphism group, which you can think of as describing the relation hkh'k' = h''k'' in G = HK. Define $\varphi : K \to \operatorname{Aut}(H)$ by $k \mapsto \varphi_k(h) = khk^{-1}$, one can check that this is a homomorphism. With this, we have for any $h, h' \in H$ and $k, k' \in K$,

$$hkh'k'=h(kh'k^{-1})kk'=h\varphi_k(h')kk'=h''k'',$$
 and
$$(hk)^{-1}=(k^{-1}h^{-1}=k^{-1}h^{-1}k)k^{-1}=\varphi_{k^{-1}}(h^{-1})k^{-1}$$

In other words, we can determine the structure of $H \rtimes K$ by the data of the map $K \to \operatorname{Aut}(H)$. Like the case for direct products, we can define semidirect products of H, K externally without starting from a bigger group G.

Theorem. Let H, K be groups and suppose we have a homomorphism $\varphi: K \to \operatorname{Aut}(H)$, then there is a group G so that we have embeddings $\iota_1: H \hookrightarrow G$ and $\iota_2: K \hookrightarrow G$ so that $G \cong \iota_1(H) \rtimes \iota_2(K)$.

Proof. Let $G = H \times K$ as sets, we can define the group operation on G by taking $(h,k) \cdot (h',k') := (h\varphi_k(h'),kk')$. Writing 1 as both the identities of H and K, we also have (1,1) is an identity of G since $(1,1) \cdot (h,k) = (1 \cdot \varphi_1(h), 1 \cdot k) = (h,k)$ and similarly for right identity. We define the inverse of (h,k) by as $(h,k)^{-1} = (\varphi_{k-1}(h^{-1}),k^{-1})$. Then $(h,k)^{-1} \cdot (h,k) = (h,k)$

 $(\varphi_{k^{-1}}(h^{-1})\varphi_{k^{-1}}(h),k^{-1}k)=(\varphi_{k^{-1}}(h^{-1}h),1)=(1,1)$ so left inverse exists, similarly one can verify for right inverse. I leave the proof of associativity of the group operation to the readers ;)

With G constructed, we have natural embeddings $H \to G$ by $\iota(h) = (h,1)$ and $K \to G$ by $\iota_2(k) = (1,k)$. One can also verify that they are indeed injective homomorphisms (this is not by definition because we have a modified operation on $H \times K!$) First of all, $\iota_1(H) \triangleleft G$ because the second component of $(h,k) \cdot (x,1) \cdot (h,k)^{-1}$ is simply given by $k \cdot 1 \cdot k^{-1} = 1$. Now $\iota_1(H) \cap \iota_2(K) = (1,1)$, and G = HK since any $(h,k) = (h,1) \cdot (1,k) = (h\varphi_1(1),k)$. So we indeed have $G \cong \iota_1(H) \rtimes \iota_2(K)$ as claimed.

The notion of semidirect product may look weird at first. One can realize it as a twisted product between two groups. This generalizes direct product since direct product is just given by the trivial map $K \to \operatorname{Aut}(H)$ by $k \mapsto \operatorname{Id}$. There is yet another way to realize semidirect products as a restricted type of group extensions.

Theorem. Suppose $1 \to H \xrightarrow{\varphi} G \xrightarrow{\psi} K \to 1$ is an exact sequence that splits, i.e. there exists a homomorphism $s: K \to G$ so that $\psi \circ s = \mathrm{Id}: K \to K$. Then $G = \varphi(H) \rtimes s(K)$.

Proof. Recall that in any short exact sequence, $\varphi: H \to G$ is injective, and $\psi: G \to K$ is surjective. This forces $s: K \to G$ to be injective, since $s(k) = e \Rightarrow k = \psi(s(k)) = \psi(e) = e$. To show that G is the semidirect product of subgroups, we must show that:

- 1. $\varphi(H)$ is normal: This is true since $\varphi(H) = \ker(\psi)$.
- 2. $\varphi(H) \cap s(K) = \{e\}$: If $g = \varphi(h) = s(k)$, then $e = \psi(\varphi(h)) = \psi(g) = \psi(s(k)) = k$. Here the first equality is from exactness, and the last equality is from property of s. Therefore g = s(k) = s(e) = e.
- 3. $G = \varphi(H)s(K)$, in the finite case, we can simply see this by cardinality argument that $|G| = |\varphi(H)s(K)| = |\varphi(H)| \cdot |s(K)| = |H| \cdot |K|$, which is guaranteed by property of exact sequence. In general, given any $g \in G$, we can take $k = \psi(g)$. Note that $g \cdot s(k^{-1})$ is in $\varphi(H) = \ker(\psi)$ since $\psi(g) \cdot \psi(s(k^{-1})) = kk^{-1} = 1$. Therefore $g = gs(k^{-1}) \cdot s(k) \in \varphi(H)s(K)$.

This proves that $G = \varphi(H) \rtimes \psi(K)$.

One can also just construct a map $K \to \operatorname{Aut}(H)$. To simplify notation, let's not distinguish between $H \cong \varphi(H)$ as they are isomorphic. Then $\varphi_k : H \to H$ is defined simply by $\varphi_k(h) = s(k) \cdot h \cdot s(k)^{-1}$. Conversely, one can also construct a split exact sequence whenever we have $G \cong H \rtimes K$: as we can take $H \triangleleft G$, we have the sequence $1 \to H \to G \to G/H \to 1$. Here we can identify $K \cong G/H$ since G = HK and the right cosets have multiplication given by (Hk)(Hk') = H(kk') by property of semidirect product. Then the splitting is just given by inclusion $K \hookrightarrow G$ because $K \hookrightarrow G \to G/H$ is given by $k \mapsto 1 \cdot k \mapsto Hk$.

We end this section by discussing an example and a non-example of semidirect product. Consider the normal subgroup $SL(n,F) \leq GL(n,F)$ where F is an arbitrary field, this is normal as it is obtained from the kernel of the homomorphism $\det: GL(n,F) \to F^{\times}$, here F^{\times}

is the multiplicative group of the field. We also have $F^{\times} \leq GL(n, F)$ by

$$\iota: a \mapsto \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Clearly, $\det(\iota(a)) = a \in F^{\times}$, therefore $1 \to SL(n,F) \hookrightarrow GL(n,F) \stackrel{\det}{\to} F^{\times} \to 1$ is a split exact sequence, thus corresponding to a semidirect product. Alternatively, one can realize this semidirect product via conjugate action of $\iota(a)$, in other words $F^{\times} \to \operatorname{Aut}(SL(n,F))$ as given by $a \mapsto (A \mapsto \iota(a)A\iota(a)^{-1})$. Hence, we have $GL(n,F) \cong SL(n,F) \rtimes F^{\times}$.

For a non-example (a group extension that is not split), consider

$$1 \to \mathbb{Z}_p \to \mathbb{Z}_{p^2} \to \mathbb{Z}_p \to 1$$

Where the first map is given by $1 \mapsto p \in \mathbb{Z}_{p^2}$. Since \mathbb{Z}_{p^2} is abelian, if we have a splitting $\mathbb{Z}_p \to \mathbb{Z}_{p^2}$, that would give two subgroups of \mathbb{Z}_{p^2} that are isomorphic to \mathbb{Z}_p , which are necessarily normal. This would imply that $\mathbb{Z}_{p^2} \cong \mathbb{Z}_p^2$, which is a contradiction.