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• Tutorial exercise would be uploaded to blackboard on Tuesdays provided that there is a
tutorial class on that Thursday. You are not required to hand in the solution, but you are
advised to try the problems before tutorial classes.

• Please send an email to echlam@math.cuhk.edu.hk if you have any questions.

1. Suppose f : G → G′ with G cyclic, let g ∈ G be a generator, then any g′ ∈ G′ can
be written as g′ = f(gk) = f(g)k for some k, since f(G) = G′, we have G′ is cyclic.
Likewise if G is abelian, for any c, d ∈ G′, there are a, b ∈ G so that f(a) = c and
f(b) = d. Then cd = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = dc.

2. Since H ∩ N is a subgroup of H , we know a(H ∩ N)a−1 = H ∩ aNa−1 = H ∩ N for
any a ∈ H .

3. Let G = GL(2,R) be the set of 2×2 invertible matrices with coefficients in R, then X =(
1 1
0 1

)
generates a subgroup H isomorphic to Z since Xk =

(
1 k
0 1

)
. Now

(
1 1
0 1

)
and

(
1 2
0 1

)
are conjugate to each other by

(
2 0
0 1

)(
1 1
0 1

)(
1
2

0
0 1

)
=

(
1 2
0 1

)
. Setting

A =

(
2 0
0 1

)
, we have AHA−1 ≤ H is a proper subgroup since AMA−1 = X implies

M does not have integer coefficients, so cannot possibly lie in H .

4. Let m ∈ M and n ∈ N , then by normality of N mnm−1n−1 = (mnm−1)n−1 ∈ N , and
by normality of M , mnm−1n−1 = m(nm−1n−1) ∈ M . So mnm−1n−1 ∈ M ∩N = {e}.
So mn = nm.

5. Let (a1, a2) be in the center of G1×G2, then for any (b1, b2) ∈ G1×G2, then (a1, a2)(b1, b2) =
(b1, b2)(a1, a2) implies that a1b1 = b1a1 and a2b2 = b2a2. Since b1, b2 can be arbitrary
elements in G1, G2 respectively, this implies a1 ∈ Z1 and a2 ∈ Z2. The converse is clear.

6. (a) This statement is true in general for Sn. To see why x̃ = σxσ−1 has the same cycle
type as x, think of elements of Sn as a bijective functions on {1, ..., n}. Writing
x(i) = j, we have x̃(σ(i)) = σ(x(i)) = σ(j). So up to relabelling the elements
i 7→ σ(i), x̃ and x are the same cycle structure.

(b) i. By direct counting using combinatorics, there are 24!/4 = 6 many distinct 4-
cycles of the form like (1324).

ii. There are 24!/3 = 8 many distinct 3-cycles of form like (241).
iii. There are C4

2/2 = 3 many distinct (2, 2)-cycles of form like (14)(23).
iv. And there are C4

2 = 6 many distinct 2-cycles of form like (12).
v. Finally there is one 1-cycle e.



(c) If N ≤ S4 is a normal subgroup, then σxσ−1 ∈ N for any x ∈ N and σ ∈ S4. By
the same argument in part (a), if x, x̃ ∈ S4 are of the same cycle type, then we can
find σ so that σxσ−1 = x̃. Therefore, in order for N to be normal, if we have x ∈ N ,
it would imply that N contains all elements of the same cycle type as x. At the same
time, by Lagrange’s theorem, N has order a divisor of |S4| = 24. By examining
part (b), we see that the only possible nontrivial proper normal subgroup of S4 are
union of cases (ii), (iii) and (v), or union of cases (iii) and (v). In the first case, it is
a subgroup of order 12, hence its index is 2, so it must be normal. In fact, this group
is the alternating group A4 consisting of all even elements of S4. In the second case,
one can check that it is a subgroup, and hence must be a normal subgroup.
(Warning: A priori, we don’t know whether taking an arbitrary union of all elements
in the same cycle types would form a subgroup. It is necessary to check that it is
close under group product.)

7. First of all, we know x[G:N ] ∈ N for any x ∈ G. This is due to Lagrange’s theorem:
the coset xN ∈ G/N has order dividing [G : N ] = |G/N |, therefore (xN)[G : N ] =
(x[G : H]H) = H , i.e. x[G : H] ∈ H . Now the coprime condition implies that there are
integers a, b so that a[G : N ] + b ordN = 1, therefore

x1 = xa [G:N ]+b ordN = (x[G:n])a(xordN)b = (x[G:N ])a ∈ N.

8. Suppose C is a cyclic subgroup that is normal in G, then any subgroup C ′ ≤ C is also
a cyclic group. In fact, following from the structures of cyclic groups, C ′ is the unique
subgroup of C with that particular order. Therefore for any g ∈ G, gC ′g−1 ≤ gCg−1 = C
must be equal to C ′, as gC ′g−1 has the same cardinality as C ′.

9. G′ is generated by elements of the form ABA−1B−1 for matrices A,B ∈ G, note that
det(ABA−1B−1) = 1, and hence every element in G′ must lie in SL(2,R).

10. To show that H is normal, note that
(
a b
0 c

)−1

=

(
1
a

−b
ac

0 1
c

)
, so it suffices to check

that
(
a b
0 c

)(
1 x
0 1

)(
1
a

−b
ac

0 1
c

)
∈ H . This is clear since the top left entry is given by

a · 1 · 1
a
= 1 and the bottom right entry is given by c · 1 · 1

c
= 1.

Now consider the commutator subgroup of G, by the same argument as above, if we are
given A,B ∈ G, then ABA−1B−1 has top left and bottom right entries being 1, hence the
commutator subgroup is contained in H . By proposition in lecture 2, we conclude that
G/H is abelian.

To determine the group structure, consider
(
a b
0 c

)(
1 x
0 1

)
=

(
a ax+ b
0 c

)
. There-

fore in any coset
(
a b
0 c

)
H , by taking x = − b

a
, we have a distinguished representative(

a 0
0 c

)
. Hence G/H =

{(
a 0
0 c

)
: a ̸= 0, c ̸= 0

}
∼= (R×)2.

11. There is relatively simpler proof if you are comfortable with universal properties. Let
Fn = F (a1, ..., an) be the free groups on n letters and F ′

n be the derived subgroup of Fn,



then F ab
n := Fn/F

′
n is called the abelianization of Fn. It satisfies the universal property

that whenever we are given homomorphism f : Fn → G to an abelian group G, it factors
into

Fn G

F ab
n

f

π
∃f ′

Now let Z⊕n be the free abelian group generated by a1, ..., an, it satisfies the universal
property that given any set function g : {a1, ..., an} → G for abelian group G, there
exists a unique homomorphism f : Z⊕n → G extending g. It suffices to prove that F ab

n

also satisfies the same universal property. Given g : {a1, ..., an} → G as before, we
can first obtain f : Fn → G by universal property of free group. Since G is abelian,
it automatically factors through F ab

n . With the property that f ′(aiF
′
n) = f(ai) := g(ai)

for coset aiF ′
n ∈ F ab

n . In particular, since F ab
n and Z⊕n are both abelian, we obtain

maps F ab
n → Z⊕n and Z⊕n → F ab

n which are inverse to each other. This implies that
F ab
n

∼= Z⊕n.

Alternatively, one can prove this statement by defining Fn → Z⊕n by sending generators
ai to ei = (0, ..., 1, ..., 0) and prove that the kernel of this homomorphism is the same as
the commutator subgroup.


