THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Tutorial 3
 28th September2023

- Tutorial exercise would be uploaded to blackboard on Tuesdays provided that there is a tutorial class on that Thursday. You are not required to hand in the solution, but you are advised to try the problems before tutorial classes.
- Please send an email to echlam@math.cuhk.edu.hk if you have any questions.

1. Suppose $f: G \rightarrow G^{\prime}$ with G cyclic, let $g \in G$ be a generator, then any $g^{\prime} \in G^{\prime}$ can be written as $g^{\prime}=f\left(g^{k}\right)=f(g)^{k}$ for some k, since $f(G)=G^{\prime}$, we have G^{\prime} is cyclic. Likewise if G is abelian, for any $c, d \in G^{\prime}$, there are $a, b \in G$ so that $f(a)=c$ and $f(b)=d$. Then $c d=f(a) f(b)=f(a b)=f(b a)=f(b) f(a)=d c$.
2. Since $H \cap N$ is a subgroup of H, we know $a(H \cap N) a^{-1}=H \cap a N a^{-1}=H \cap N$ for any $a \in H$.
3. Let $G=G L(2, \mathbb{R})$ be the set of 2×2 invertible matrices with coefficients in \mathbb{R}, then $X=$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ generates a subgroup H isomorphic to \mathbb{Z} since $X^{k}=\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$. Now $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ are conjugate to each other by $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. Setting $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$, we have $A H A^{-1} \leq H$ is a proper subgroup since $A M A^{-1}=X$ implies M does not have integer coefficients, so cannot possibly lie in H.
4. Let $m \in M$ and $n \in N$, then by normality of $N m n m^{-1} n^{-1}=\left(\mathrm{mnm}^{-1}\right) n^{-1} \in N$, and by normality of $M, m n m^{-1} n^{-1}=m\left(n m^{-1} n^{-1}\right) \in M$. So $m n m^{-1} n^{-1} \in M \cap N=\{e\}$. So $m n=n m$.
5. Let $\left(a_{1}, a_{2}\right)$ be in the center of $G_{1} \times G_{2}$, then for any $\left(b_{1}, b_{2}\right) \in G_{1} \times G_{2}$, then $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=$ $\left(b_{1}, b_{2}\right)\left(a_{1}, a_{2}\right)$ implies that $a_{1} b_{1}=b_{1} a_{1}$ and $a_{2} b_{2}=b_{2} a_{2}$. Since b_{1}, b_{2} can be arbitrary elements in G_{1}, G_{2} respectively, this implies $a_{1} \in Z_{1}$ and $a_{2} \in Z_{2}$. The converse is clear.
6. (a) This statement is true in general for S_{n}. To see why $\tilde{x}=\sigma x \sigma^{-1}$ has the same cycle type as x, think of elements of S_{n} as a bijective functions on $\{1, \ldots, n\}$. Writing $x(i)=j$, we have $\tilde{x}(\sigma(i))=\sigma(x(i))=\sigma(j)$. So up to relabelling the elements $i \mapsto \sigma(i), \tilde{x}$ and x are the same cycle structure.
(b) i. By direct counting using combinatorics, there are $24!/ 4=6$ many distinct 4 cycles of the form like (1324).
ii. There are $24!/ 3=8$ many distinct 3 -cycles of form like (241).
iii. There are $C_{2}^{4} / 2=3$ many distinct $(2,2)$-cycles of form like (14)(23).
iv. And there are $C_{2}^{4}=6$ many distinct 2-cycles of form like (12).
v. Finally there is one 1-cycle e.
(c) If $N \leq S_{4}$ is a normal subgroup, then $\sigma x \sigma^{-1} \in N$ for any $x \in N$ and $\sigma \in S_{4}$. By the same argument in part (a), if $x, \tilde{x} \in S_{4}$ are of the same cycle type, then we can find σ so that $\sigma x \sigma^{-1}=\tilde{x}$. Therefore, in order for N to be normal, if we have $x \in N$, it would imply that N contains all elements of the same cycle type as x. At the same time, by Lagrange's theorem, N has order a divisor of $\left|S_{4}\right|=24$. By examining part (b), we see that the only possible nontrivial proper normal subgroup of S_{4} are union of cases (ii), (iii) and (v), or union of cases (iii) and (v). In the first case, it is a subgroup of order 12 , hence its index is 2 , so it must be normal. In fact, this group is the alternating group A_{4} consisting of all even elements of S_{4}. In the second case, one can check that it is a subgroup, and hence must be a normal subgroup.
(Warning: A priori, we don't know whether taking an arbitrary union of all elements in the same cycle types would form a subgroup. It is necessary to check that it is close under group product.)
7. First of all, we know $x^{[G: N]} \in N$ for any $x \in G$. This is due to Lagrange's theorem: the coset $x N \in G / N$ has order dividing $[G: N]=|G / N|$, therefore $\left.(x N)^{[} G: N\right]=$ $\left(x^{[G: H] H)}=H\right.$, i.e. $\left.x^{[} G: H\right] \in H$. Now the coprime condition implies that there are integers a, b so that $a[G: N]+b$ ord $N=1$, therefore

$$
x^{1}=x^{a[G: N]+b \operatorname{ord} N}=\left(x^{[G: n]}\right)^{a}\left(x^{\operatorname{ord} N}\right)^{b}=\left(x^{[G: N]}\right)^{a} \in N .
$$

8. Suppose C is a cyclic subgroup that is normal in G, then any subgroup $C^{\prime} \leq C$ is also a cyclic group. In fact, following from the structures of cyclic groups, C^{\prime} is the unique subgroup of C with that particular order. Therefore for any $g \in G, g C^{\prime} g^{-1} \leq g C g^{-1}=C$ must be equal to C^{\prime}, as $g C^{\prime} g^{-1}$ has the same cardinality as C^{\prime}.
9. G^{\prime} is generated by elements of the form $A B A^{-1} B^{-1}$ for matrices $A, B \in G$, note that $\operatorname{det}\left(A B A^{-1} B^{-1}\right)=1$, and hence every element in G^{\prime} must lie in $S L(2, \mathbb{R})$.
10. To show that H is normal, note that $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)^{-1}=\left(\begin{array}{cc}\frac{1}{a} & \frac{-b}{a c} \\ 0 & \frac{1}{c}\end{array}\right)$, so it suffices to check that $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\frac{1}{a} & \frac{-b}{a c} \\ 0 & \frac{1}{c}\end{array}\right) \in H$. This is clear since the top left entry is given by $a \cdot 1 \cdot \frac{1}{a}=1$ and the bottom right entry is given by $c \cdot 1 \cdot \frac{1}{c}=1$.
Now consider the commutator subgroup of G, by the same argument as above, if we are given $A, B \in G$, then $A B A^{-1} B^{-1}$ has top left and bottom right entries being 1 , hence the commutator subgroup is contained in H. By proposition in lecture 2, we conclude that G / H is abelian.
To determine the group structure, consider $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}a & a x+b \\ 0 & c\end{array}\right)$. Therefore in any coset $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) H$, by taking $x=-\frac{b}{a}$, we have a distinguished representative $\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right)$. Hence $G / H=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right): a \neq 0, c \neq 0\right\} \cong\left(\mathbb{R}^{\times}\right)^{2}$.
11. There is relatively simpler proof if you are comfortable with universal properties. Let $F_{n}=F\left(a_{1}, \ldots, a_{n}\right)$ be the free groups on n letters and F_{n}^{\prime} be the derived subgroup of F_{n},
then $F_{n}^{a b}:=F_{n} / F_{n}^{\prime}$ is called the abelianization of F_{n}. It satisfies the universal property that whenever we are given homomorphism $f: F_{n} \rightarrow G$ to an abelian group G, it factors into

Now let $\mathbb{Z}^{\oplus n}$ be the free abelian group generated by a_{1}, \ldots, a_{n}, it satisfies the universal property that given any set function $g:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow G$ for abelian group G, there exists a unique homomorphism $f: \mathbb{Z}^{\oplus n} \rightarrow G$ extending g. It suffices to prove that $F_{n}^{a b}$ also satisfies the same universal property. Given $g:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow G$ as before, we can first obtain $f: F_{n} \rightarrow G$ by universal property of free group. Since G is abelian, it automatically factors through $F_{n}^{a b}$. With the property that $f^{\prime}\left(a_{i} F_{n}^{\prime}\right)=f\left(a_{i}\right):=g\left(a_{i}\right)$ for coset $a_{i} F_{n}^{\prime} \in F_{n}^{a b}$. In particular, since $F_{n}^{a b}$ and $\mathbb{Z}^{\oplus n}$ are both abelian, we obtain maps $F_{n}^{a b} \rightarrow \mathbb{Z}^{\oplus n}$ and $\mathbb{Z}^{\oplus n} \rightarrow F_{n}^{a b}$ which are inverse to each other. This implies that $F_{n}^{a b} \cong \mathbb{Z}^{\oplus n}$.
Alternatively, one can prove this statement by defining $F_{n} \rightarrow \mathbb{Z}^{\oplus n}$ by sending generators a_{i} to $e_{i}=(0, \ldots, 1, \ldots, 0)$ and prove that the kernel of this homomorphism is the same as the commutator subgroup.

