THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Tutorial 3
 28th Semptember 2023

- Tutorial exercise would be uploaded to blackboard on Tuesdays provided that there is a tutorial class on that Thursdays. You are not required to hand in the solution, but you are advised to try the problems before tutorial classes.
- Please send an email to echlam@math.cuhk.edu.hk if you have any questions.

1. Let $\varphi: G \rightarrow G^{\prime}$ be a surjective homomorphism, prove that if G is cyclic, then G^{\prime} is also cyclic. And if G is abelian, then G^{\prime} is abelian.
2. Let H be a subgroup of G, suppose $N \triangleleft G$, prove that $H \cap N \triangleleft H$.
3. Find an example of a group G and a subgroup H so that there is an element $a \in G$ with $a H a^{-1} \leq H$ but $a H a^{-1} \neq H$.
4. Let N, M be normal subgroups of G, suppose $N \cap M=\{e\}$, prove that for all $m \in M$ and $n \in N, m n=n m$.
5. Let $Z_{1} \leq G_{1}$ and $Z_{2} \leq G_{2}$ be the centers of G_{1} and G_{2} respectively, prove that $Z_{1} \times Z_{2}$ is the center of $G_{1} \times G_{2}$.
6. In the following exercise, we will try to find all normal subgroups of S_{4}.
(a) Prove that for any $\sigma \in S_{4}, \sigma x \sigma^{-1}$ preserves the cycle type of x. For example, if x is a 4 -cycle like (1324), then $\sigma x \sigma^{-1}$ is again a 4 -cycle. (Hint: prove the statement for σ being transpositions ($i j$).)
(b) The possible cycle types of S_{4} corresponds to partition of the integer 4, i.e. the different ways of writing 4 as a sum of positive integers. For example $2+1+$ $1=4$ corresponds to a 2 -cycle like $(13)(2)(4)=(13)$. For S_{4}, there are 4 -cycles, 3 -cycles, 2 -cycles, $(2,2)$-cycles like (13)(24) and the only 1 -cycle identity. Find out the numbers of elements in each different cycle types. (E.g. there is only one element that is a 1-cycle.)
(c) By (a), we know that any normal subgroup must be a union of all elements in certain cycle types. Using Lagrange's theorem, find out potential candidates of normal subgroups of S_{4} and determine which one are actual subgroups.
7. Suppose N is a normal subgroup of G so that ord (N) and $[G: N]$ are relatively prime, prove that any element in $x \in G$ satisfying $x^{\text {ord (N) }}=e$ must be in N.
8. Suppose G contains a normal cyclic subgroup C, prove that any subgroup of C must also be normal in G.
9. Let $G=G L(2, \mathbb{R})=\left\{A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}, \operatorname{det} A \neq 0\right\}$ be the group of 2×2 invertible matrices, prove that the commutator subgroup G^{\prime} is contained in $S L(2, \mathbb{R})=$ $\{A \in G: \operatorname{det} A=1\}$.
10. Let $G=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{R}, a \neq 0, c \neq 0\right\}$ with group operation given by matrix multiplications. Prove that $H=\left\{\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right): x \in \mathbb{R}\right\}$ forms a normal subgroup of G. Is G / H abelian? Can you determine the group structure of G / H ?
11. Prove that the abelianization of free group on n generators F_{n} is isomorphic to $\mathbb{Z}^{\oplus n}$.
