THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Tutorial 2
 21st September 2023

- The tutorial solutions are written for reference and proofs will be sketched briefly. You should try to fill in the details as an exercise. Please send an email to echlam@ math.cuhk.edu.hk if you have any further questions.

1. Recall that any homomorphism from F_{n} to an arbitrary group G is uniquely determined by the image of the n generators. If G is a finite group of order $|G|>1$, then $\operatorname{Hom}\left(F_{n}, G\right) \cong$ $\operatorname{Hom}(\{1,2, \ldots, n\}, G) \cong G^{n}$, which has cardinality $|G|^{n}$. In particular if $m \neq n$, the cardinalities of the sets of homomorphisms from F_{n} to G are not the same, so they are not isomorphic.
2. By Nielsen-Schreier theorem, $\langle x, y\rangle$ is a subgroup that is free. This is also abelian by assumption on x, y, therefore $\langle x, y\rangle \cong \mathbb{Z}$, i.e. there exists some c such that $\langle c\rangle=\langle x, y\rangle$, so that $x=c^{i}$ and $y=c^{j}$.
(Let me stress once again that this is outside of the syllabus and only serves as a demonstration of the powerful theorem.)
3. (a) Suppose $F_{2}=F(a, b)$, let $x_{i}=a^{i} b^{i}$ for any $1 \leq i \leq m$, then we can show that $\left\langle x_{1}, \ldots, x_{m}\right\rangle \cong F_{m}$ for any $m \in \mathbb{Z}_{>0}$. Write $F_{m}=F\left(\left\{a_{1}, \ldots, a_{m}\right\}\right)$, then as discussed before there is a homomorphism $\varphi: F_{m} \rightarrow\left\langle x_{1}, \ldots, x_{m}\right\rangle$ by sending $a_{i} \mapsto x_{i}$. This is by definition surjective, since $\left\langle x_{1}, \ldots, x_{m}\right\rangle$ contains words in x_{i} 's which is the image of the corresponding words in a_{i} 's. So it suffices to prove that φ is injective.
Injectivity amounts to showning that there are no relations among the x_{i} 's. In other words, if $w \in F_{m}$ is a word in a_{i} 's so that $\varphi(w)$ reduces to the empty word in $F(a, b)$, then the unreduced word $\varphi(w)$, expressed in terms of a, b would contain subwords like $b^{k} b^{-k}$. This is because the positive powers of x_{i} has b 's at the end and the negative powers of x_{i} has b 's in front. So in order for them to cancel out, we must have x_{k} and x_{k}^{-1} next to each other in $\varphi(w)$. So by an induction argument of the length of w, the word w itself must originally reduce to the empty word. This completes the proof.
Note that this shows that there is in fact $F\left(\mathbb{Z}_{>0}\right) \leq F_{2}$ where $F\left(\mathbb{Z}_{>0}\right)$ is a free group of countably many generators.
(b) Denote $[G]$ the underlying set of a group, then $F([G])$ is a free group whose generators are given by elements of G without relations, we have a natural homomorphism $\varphi: F([G]) \rightarrow G$ by sending $g \rightarrow g$. This is clearly surjective and by first isomorphism theorem $G \cong F([G]) / \operatorname{ker} \varphi$.
(c) We can look for normal subgroups by considering kernels of homomorphisms. For example, consider $F(a, b) \rightarrow \mathbb{Z} \times \mathbb{Z}$ by $a \mapsto(1,0)$ and $b \mapsto(0,1)$. Then the kernel of this homomorphism is given by the set of elements w so that we have same numbers of a and a^{-1}, b and b^{-1} appearing in the word w.

Inspired by the above, we see that it is not difficult to describe subgroups by specifying the degrees on the words. For example,

$$
H=\left\{w=a^{i_{1}} b^{j_{1}} \cdots a^{i_{n}} b^{j_{n}}: i_{1}+\ldots+i_{n} \text { is divisible by } 2\right\}
$$

gives another example of a normal subgroup, because conjugating a word $g w g^{-1}$ would not change the degree. Alternatively, you can also see that it is normal because it has index $[F(a, b): H]=2$. In this example, this corresponds to kernel of homomorphism $F(a, b) \rightarrow \mathbb{Z}_{2}$ by $a \mapsto 1$ and $b \mapsto 0$.
On the other hand, non-normal subgroups are easy to write down. For example, the subgroup given in part (a) for $m=1$, i.e. the subgroup generated by $a b \in F(a, b)$. Clearly this group is isomorphic to \mathbb{Z}, and every element is given by $(a b)^{k}$ for some $k \in \mathbb{Z}$. So $a^{-1} a b a=b a$ cannot be in the subgroup. Similarly $\langle a\rangle \leq F(a, b)$ is not normal.
4. Let $a \in G$, since $x \mapsto a x$ defines a set bijection from $G \rightarrow G$, we have $a N a^{-1}=$ $\bigcap_{g \in G} a g H g^{-1} a^{-1}=\bigcap_{a g=g^{\prime} \in G} g^{\prime} H g^{\prime-1}=N$.
5. If $[G: H]<\infty$, there exists finitely many left coset space $a H$. Suppose $a H=b H$, then there is some h so that $a=b h$, so $a H a^{-1}=b h H h^{-1} b^{-1}=b H b^{-1}$. Therefore there are at most as many subgroup of the form $g \mathrm{Hg}^{-1}$ as there are cosets $g H$, which is finite.
6. Contraposition of the implication is given by $a H=b H \Rightarrow H a=H b$. We can rewrite the implication equivalently as $b^{-1} a H=H \Rightarrow H=H b a^{-1}$. Now for any $g \in G$ and $h \in H$, choose $b=g h$ and $a=g$, then $b^{-1} a H=h^{-1} g^{-1} g H=h^{-1} H=H$ is fulfilled, so by assumption $H=H b a^{-1}=H g h g^{-1}$. By property of cosets we have $g h g^{-1} \in H$. Since $h \in H$ is arbitrary, we obtain $g H^{-1} \leq H$ for any g.

