THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH 3030 Abstract Algebra 2023-24 Tutorial 2 21st September 2023

- The tutorial solutions are written for reference and proofs will be sketched briefly. You should try to fill in the details as an exercise. Please send an email to echlam@math.cuhk.edu.hk if you have any further questions.
- 1. Recall that any homomorphism from F_n to an arbitrary group G is uniquely determined by the image of the n generators. If G is a finite group of order |G| > 1, then $\operatorname{Hom}(F_n, G) \cong \operatorname{Hom}(\{1, 2, ..., n\}, G) \cong G^n$, which has cardinality $|G|^n$. In particular if $m \neq n$, the cardinalities of the sets of homomorphisms from F_n to G are not the same, so they are not isomorphic.
- 2. By Nielsen-Schreier theorem, $\langle x, y \rangle$ is a subgroup that is free. This is also abelian by assumption on x, y, therefore $\langle x, y \rangle \cong \mathbb{Z}$, i.e. there exists some c such that $\langle c \rangle = \langle x, y \rangle$, so that $x = c^i$ and $y = c^j$.
 - (Let me stress once again that this is outside of the syllabus and only serves as a demonstration of the powerful theorem.)
- 3. (a) Suppose $F_2 = F(a,b)$, let $x_i = a^i b^i$ for any $1 \le i \le m$, then we can show that $\langle x_1,...,x_m \rangle \cong F_m$ for any $m \in \mathbb{Z}_{>0}$. Write $F_m = F(\{a_1,...,a_m\})$, then as discussed before there is a homomorphism $\varphi : F_m \to \langle x_1,...,x_m \rangle$ by sending $a_i \mapsto x_i$. This is by definition surjective, since $\langle x_1,...,x_m \rangle$ contains words in x_i 's which is the image of the corresponding words in a_i 's. So it suffices to prove that φ is injective.
 - Injectivity amounts to showning that there are no relations among the x_i 's. In other words, if $w \in F_m$ is a word in a_i 's so that $\varphi(w)$ reduces to the empty word in F(a,b), then the unreduced word $\varphi(w)$, expressed in terms of a,b would contain subwords like b^kb^{-k} . This is because the positive powers of x_i has b's at the end and the negative powers of x_i has b's in front. So in order for them to cancel out, we must have x_k and x_k^{-1} next to each other in $\varphi(w)$. So by an induction argument of the length of w, the word w itself must originally reduce to the empty word. This completes the proof.
 - Note that this shows that there is in fact $F(\mathbb{Z}_{>0}) \leq F_2$ where $F(\mathbb{Z}_{>0})$ is a free group of countably many generators.
 - (b) Denote [G] the underlying set of a group, then F([G]) is a free group whose generators are given by elements of G without relations, we have a natural homomorphism $\varphi: F([G]) \to G$ by sending $g \to g$. This is clearly surjective and by first isomorphism theorem $G \cong F([G])/\ker \varphi$.
 - (c) We can look for normal subgroups by considering kernels of homomorphisms. For example, consider $F(a,b) \to \mathbb{Z} \times \mathbb{Z}$ by $a \mapsto (1,0)$ and $b \mapsto (0,1)$. Then the kernel of this homomorphism is given by the set of elements w so that we have same numbers of a and a^{-1} , b and b^{-1} appearing in the word w.

Inspired by the above, we see that it is not difficult to describe subgroups by specifying the degrees on the words. For example,

$$H = \{w = a^{i_1}b^{j_1}\cdots a^{i_n}b^{j_n}: i_1 + \dots + i_n \text{ is divisible by 2}\}$$

gives another example of a normal subgroup, because conjugating a word gwg^{-1} would not change the degree. Alternatively, you can also see that it is normal because it has index [F(a,b):H]=2. In this example, this corresponds to kernel of homomorphism $F(a,b)\to \mathbb{Z}_2$ by $a\mapsto 1$ and $b\mapsto 0$.

On the other hand, non-normal subgroups are easy to write down. For example, the subgroup given in part (a) for m=1, i.e. the subgroup generated by $ab \in F(a,b)$. Clearly this group is isomorphic to \mathbb{Z} , and every element is given by $(ab)^k$ for some $k \in \mathbb{Z}$. So $a^{-1}aba = ba$ cannot be in the subgroup. Similarly $\langle a \rangle \leq F(a,b)$ is not normal.

- 4. Let $a \in G$, since $x \mapsto ax$ defines a set bijection from $G \to G$, we have $aNa^{-1} = \bigcap_{g \in G} agHg^{-1}a^{-1} = \bigcap_{ag=g' \in G} g'Hg'^{-1} = N$.
- 5. If $[G:H]<\infty$, there exists finitely many left coset space aH. Suppose aH=bH, then there is some h so that a=bh, so $aHa^{-1}=bhHh^{-1}b^{-1}=bHb^{-1}$. Therefore there are at most as many subgroup of the form gHg^{-1} as there are cosets gH, which is finite.
- 6. Contraposition of the implication is given by $aH = bH \Rightarrow Ha = Hb$. We can rewrite the implication equivalently as $b^{-1}aH = H \Rightarrow H = Hba^{-1}$. Now for any $g \in G$ and $h \in H$, choose b = gh and a = g, then $b^{-1}aH = h^{-1}g^{-1}gH = h^{-1}H = H$ is fulfilled, so by assumption $H = Hba^{-1} = Hghg^{-1}$. By property of cosets we have $ghg^{-1} \in H$. Since $h \in H$ is arbitrary, we obtain $gHg^{-1} \leq H$ for any g.