MATH3030 Tutorial 10-11

J. SHEN

23 November, 2023

$10 \quad$ Factorization in $\mathbb{Z}[i]$

10.1 Factorization, PID and UFD

We record here some relations among prime elements, irreducible element, prime ideals, and maximal ideals.

Proposition 10.1. Let R be an integral domain. Let $r \in R$,

When R is a PID, $1 \Longrightarrow 4$, and so the four statements $1-4$ are all equivalent.
An integral domain R is called a unique factorization domain (UFD) if
(U1) Any element in $R-\left(R^{\times} \cup\{0\}\right)$ is a product of irreducible elements.
(U2) The factorization is unique up to associates and reordering.
Proposition 10.2. (a) Condition (U1) is equivalent to ACCPI: If $\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq$ $\ldots \subseteq\left(a_{n}\right) \subseteq \ldots$, then there exists some n such that $\left(a_{n}\right)=\left(a_{n+1}\right)=\ldots$
(b) Under (U1), (U2) is equivalent to $1 \Longrightarrow 2$ in proposition 9.2, that is, any irreducible element is a prime.
(c) Any PID is a UFD.

10.2 Euclidean domains, Gaussian integers

An integral domain R is called an Euclidean domain (ED) if there is a size function $\sigma: R-\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ on R such that the division with remainder is possible in the following sense:
(ED1) Let $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that $a=b q+r$ and either $r=0$ or $\sigma(r)<\sigma(b)$.
(ED2) When $a \neq 0, \sigma(a b) \geq \sigma(b)$.
Artin's definition does not require (ED2), which is included for discussion of units.

Proposition 10.3. Any ED is a PID.

Examples. \mathbb{Z} is an ED with $\sigma(n)=|n|$.
$\mathbb{F}[x]$ is an ED with $\sigma(f)=\operatorname{deg}(f)$.
Recall the definition the ring of Gaussian integers $\mathbb{Z}[i]:=\{a+b i \mid a, b \in \mathbb{Z}\}$.
Proposition 10.4. $\mathbb{Z}[i]$ is an $E D$ with $\sigma(a)=|a|^{2}$ for any $a \in \mathbb{Z}[i]$.

10.3 Factorization in $\mathbb{Z}[i]$

We characterize units and prime (irreducible) elements in $\mathbb{Z}[i]$.
Proposition 10.5. (a) Units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$.
(b) If $a \in \mathbb{Z}[i]$ is a prime element, then either a is associate to an integer prime, or $a \bar{a}$ is an integer prime.
(c) Let p be an integer prime, then either p remains a prime in $\mathbb{Z}[i]$, or p factors into $\pi \bar{\pi}$ for some prime $\pi \in \mathbb{Z}[i]$.
(d) An integer prime p remains a prime in $\mathbb{Z}[i]$ exactly when $p \equiv 3(\bmod 4)$, and p factors in $\mathbb{Z}[i]$ exactly when $p=2$ or $p \equiv 1(\bmod 4)$.

Therefore, up to associates, we can list all primes in $\mathbb{Z}[i]$ as $\{3,7,11,19, \ldots\} \cup$ $\{1+i, 2+i, 2-i, 3+2 i, 3-2 i, \ldots\}$.

Corollary. An integer prime p can be written as $a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$ exactly when $p=2$ or $p \equiv 1(\bmod 4)$.

10.4 Using Gauss's Lemma

Let R be a UFD. Let $F=\operatorname{Frac}(R)$. Then $\{p: p$ is a prime in $R[x]\}=\{p$: p is a prime in $R\} \bigcup\{f: f$ is irreducible in $F[x]$, and the content $c(f)=1\}$.

Recall that in MATH2070, we have the following tools to decide whether a polynomial f is irreducible.
(a) When $f \in \mathbb{F}[x]$, if $\operatorname{deg}(f)=2$ or 3 , and if f has no root in \mathbb{F}, then f is irreducible in $\mathbb{F}[x]$.
(b) Reduce $f \bmod p$. If $\bar{f} \in \mathbb{F}_{p}[x]$ is irreducible, and $\operatorname{deg}(f)=\operatorname{deg}(\bar{f})$, then f is irreducible in $\mathbb{Z}[x]$.
(c) Eisenstein's criterion. Let $f=\sum_{i=0}^{n} a_{i} x^{i}$ be primitive. Let p be a prime. Suppose $p \mid a_{0}, a_{1}, \ldots, a_{n-1}, p \nmid a_{n}$, and $p^{2} \nmid a_{0}$, then f is irreducible in $\mathbb{Z}[x]$.

Note that method (b) and (c) generalize: We can replace \mathbb{Z} by any UFD R, and replace $p \in \mathbb{Z}$ by a prime $p \in R$.

Exercise. (a) Factorize $x^{p}+y^{p}$ in $\mathbb{C}[x, y]$.
(b) Show that $x^{p}+y^{p}+z^{p}$ is irreducible in $\mathbb{C}[x, y, z]$. (Hint: Eisenstein criterion)
(c) Show that $x y+z w$ is irreducible in $\mathbb{C}[x, y, z, w]$.

