MATH3030 Tutorial 10-11

J. SHEN

23 November, 2023

10 Factorization in $\mathbb{Z}[i]$

10.1 Factorization, PID and UFD

We record here some relations among prime elements, irreducible element, prime ideals, and maximal ideals.

Proposition 10.1. Let R be an integral domain. Let $r \in R$,

1. r is irreducible. \Leftarrow 2. r is a prime element. \downarrow 4. (r) is a maximal ideal. \Longrightarrow 3. (r) is a prime ideal.

When R is a PID, $1 \Longrightarrow 4$, and so the four statements 1-4 are all equivalent.

An integral domain R is called a unique factorization domain (UFD) if (U1) Any element in $R - (R^{\times} \cup \{0\})$ is a product of irreducible elements. (U2) The factorization is unique up to associates and reordering.

Proposition 10.2. (a) Condition (U1) is equivalent to ACCPI: If $(a_1) \subseteq (a_2) \subseteq \ldots \subseteq (a_n) \subseteq \ldots$, then there exists some n such that $(a_n) = (a_{n+1}) = \ldots$

- (b) Under (U1), (U2) is equivalent to $1 \implies 2$ in proposition 9.2, that is, any irreducible element is a prime.
- (c) Any PID is a UFD.

10.2 Euclidean domains, Gaussian integers

An integral domain R is called an Euclidean domain (ED) if there is a size function $\sigma : R - \{0\} \to \mathbb{Z}_{\geq 0}$ on R such that the division with remainder is possible in the following sense:

(ED1) Let $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that a = bq + r and either r = 0 or $\sigma(r) < \sigma(b)$.

(ED2) When $a \neq 0$, $\sigma(ab) \geq \sigma(b)$.

Artin's definition does not require (ED2), which is included for discussion of units.

Proposition 10.3. Any ED is a PID.

Examples. \mathbb{Z} is an ED with $\sigma(n) = |n|$. $\mathbb{F}[x]$ is an ED with $\sigma(f) = \deg(f)$. Recall the definition the ring of Gaussian integers $\mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\}.$

Proposition 10.4. $\mathbb{Z}[i]$ is an ED with $\sigma(a) = |a|^2$ for any $a \in \mathbb{Z}[i]$.

10.3 Factorization in $\mathbb{Z}[i]$

We characterize units and prime (irreducible) elements in $\mathbb{Z}[i]$.

Proposition 10.5. (a) Units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$.

- (b) If $a \in \mathbb{Z}[i]$ is a prime element, then either a is associate to an integer prime, or $a\overline{a}$ is an integer prime.
- (c) Let p be an integer prime, then either p remains a prime in $\mathbb{Z}[i]$, or p factors into $\pi\overline{\pi}$ for some prime $\pi \in \mathbb{Z}[i]$.
- (d) An integer prime p remains a prime in $\mathbb{Z}[i]$ exactly when $p \equiv 3 \pmod{4}$, and p factors in $\mathbb{Z}[i]$ exactly when p = 2 or $p \equiv 1 \pmod{4}$.

Therefore, up to associates, we can list all primes in $\mathbb{Z}[i]$ as $\{3, 7, 11, 19, ...\} \cup \{1 + i, 2 + i, 2 - i, 3 + 2i, 3 - 2i, ...\}$.

Corollary. An integer prime p can be written as $a^2 + b^2$ for some $a, b \in \mathbb{Z}$ exactly when p = 2 or $p \equiv 1 \pmod{4}$.

10.4 Using Gauss's Lemma

Let R be a UFD. Let $F = \operatorname{Frac}(R)$. Then $\{p : p \text{ is a prime in } R[x]\} = \{p : p \text{ is a prime in } R\} \bigcup \{f : f \text{ is irreducible in } F[x], \text{ and the content } c(f) = 1\}.$

Recall that in MATH2070, we have the following tools to decide whether a polynomial f is irreducible.

(a) When $f \in \mathbb{F}[x]$, if deg(f) = 2 or 3, and if f has no root in \mathbb{F} , then f is irreducible in $\mathbb{F}[x]$.

(b) Reduce $f \mod p$. If $\overline{f} \in \mathbb{F}_p[x]$ is irreducible, and $\deg(f) = \deg(\overline{f})$, then f is irreducible in $\mathbb{Z}[x]$.

(c) Eisenstein's criterion. Let $f = \sum_{i=0}^{n} a_i x^i$ be primitive. Let p be a prime. Suppose $p \mid a_0, a_1, ..., a_{n-1}, p \nmid a_n$, and $p^2 \nmid a_0$, then f is irreducible in $\mathbb{Z}[x]$.

Note that method (b) and (c) generalize: We can replace \mathbb{Z} by any UFD R, and replace $p \in \mathbb{Z}$ by a prime $p \in R$.

Exercise. (a) Factorize $x^p + y^p$ in $\mathbb{C}[x, y]$.

(b) Show that $x^p + y^p + z^p$ is irreducible in $\mathbb{C}[x, y, z]$. (Hint: Eisenstein criterion)

(c) Show that xy + zw is irreducible in $\mathbb{C}[x, y, z, w]$.