THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 9
 Due Date: 30th November 2023

Compulsory Part

1. Let R be a commutative ring and I an ideal of R. Show that the set \sqrt{I} of all $a \in R$, such that $a^{n} \in I$ for some $n \in \mathbb{Z}^{+}$, is an ideal of R, called the radical of I.

Proof. Clearly, $0^{1}=0 \in I$, so $0 \in \sqrt{I}$.
Let $x, y \in \sqrt{I}$. Then $x^{m}, y^{n} \in I$ for some $m, n>0$. Then $(x+y)^{m+n}=\sum_{k=0}^{m+n}\binom{m+n}{k} x^{k} y^{m+n-k}$. But for any $0 \leq k \leq m+n$, either $k \geq m$ or $m+n-k \geq n$. Hence either $x^{k} \in I$ or $y^{m+n-k} \in I$. It follows that each summand and hence $(x+y)^{m+n}$ is in I. Then $x+y \in \sqrt{I}$.
Let $a \in R, x \in \sqrt{I}$ Then $x^{m} \in I$ for some $m>0$. Then $(a x)^{m}=a^{m} x^{m} \in I$. Therefore, $a x \in \sqrt{I}$.
It follows that \sqrt{I} is an ideal.
2. Show by examples that for proper ideals I of a commutative ring R,
(a) \sqrt{I} need not equal I.
(b) \sqrt{I} may equal I.

Proof. (a) Take $R=\mathbb{Z}[x] /\left\langle x^{2}\right\rangle$ and $I=0$. Then $x \in \sqrt{I}-I$ because $x^{2} \in\left\langle x^{2}\right\rangle$.
(b) Take $R=\mathbb{Z}$ and $I=0$. Then $\sqrt{I}=I$ because \mathbb{Z} is an integral domain.
3. Prove that $\mathbb{Z}[x]$ is not a PID by showing that the ideal $\langle 2, x\rangle$ is not principal.

Proof. Suppose the ideal $\langle 2, x\rangle$ is principal ideal $\langle p(x)\rangle$. Since $2 \in\langle p(x)\rangle, 2=p(x) q(x)$ for some $q(x) \in \mathbb{Z}[x]$. Since \mathbb{Z} is an integral domain, we have $\operatorname{deg}(p(x) q(x))=\operatorname{deg}(p(x))+$ $\operatorname{deg}(q(x))$. Thus, both $p(x)$ and $q(x)$ must be constant. The only possible options for $p(x)$ are $\{ \pm 1, \pm 2\}$. However, This ideals obviously either contain units or not contain x.
4. Let D be an integral domain. Show that, for $k=1, \ldots, n$, the ideal $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ is prime in $D\left[x_{1}, \ldots, x_{n}\right]$.

Proof. Note that we have the isomorphism: $D\left[x_{1}, . ., x_{n}\right] /\left\langle x_{1}, \ldots, x_{k}\right\rangle \simeq D\left[x_{k+1}, \ldots, x_{n}\right]$. We conclude that $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a prime ideal since $D\left[x_{k+1}, \ldots, x_{n}\right]$ is an integral domain.
5. Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings, and let $I \subset S$ be an ideal. Prove that if I is a prime ideal in S, then $\varphi^{-1}(I)$ is a prime ideal in R. Show by giving an exmple that, however, $\varphi^{-1}(I)$ is not necessarily maximal when I is maximal.

Proof. Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings, and let $I \subset S$ be an ideal. Suppose I is prime in S. Let $x, y \in R$ with $x y \in \varphi^{-1}(I)$. Then $\varphi(x) \varphi(y)=$ $\varphi(x y) \in I$. Since I is prime, $\varphi(x) \in I$ or $\varphi(y) \in I$. Therefore, $x \in \varphi^{-1}(I)$ or $y \in \varphi^{-1}(I)$. It follows that $\varphi^{-1}(I)$ is a prime ideal in R.

Consider the embedding $\mathbb{Z} \rightarrow \mathbb{Q},\{0\}$ is a maximal ideal in \mathbb{Q}, but its preimage $\{0\}$ is not a maximal ideal in \mathbb{Z}.
6. Let R be a commutative ring, and let P be a prime ideal of R. Suppose that 0 is the only zero-divisor of R contained in P. Show that R is an integral domain.

Proof. Let $x, y \in R$. Suppose $x y=0$. Then $x y \in P$, and so $x \in P$ or $y \in P$. Without loss of generality, we assume that $x \in P$. If $y \neq 0$, then x is a zero-divisor of R contained in P. Then $x=0$. It follows that $y=0$ or $x=0$. Therefore, R is an integral domain.
7. Show that every prime ideal in a finite commutative ring R is a maximal ideal.

Proof. Let R be a finite commutative ring. Let P be a prime ideal in R. Then R / P is a finite integral domain. Let $x \in R / P$ be a nonzero element. Let $m_{x}: R / P \rightarrow R / P$ be defined by $m_{x}(y)=x y$. If $m_{x}(y)=m_{x}\left(y^{\prime}\right)$, then $x\left(y-y^{\prime}\right)=m_{x}\left(y-y^{\prime}\right)=0$. Then $y-y^{\prime}=0$ since R / P is an integral domain. Therefore, m_{x} is injective. Since R / P is finite, m_{x} is surjective. Therefore, $x y=m_{x}(y)=1$ for some $y \in R / P$. Then x is a unit in R / P. It follows that R / P is a field. Therefore, P is a maximal ideal in R.

Optional Part

1. An element a of a ring R is nilpotent if $a^{n}=0$ for some $n \in \mathbb{Z}^{+}$.

Show that the collection N of all nilpotent elements in a commutative ring R is an ideal, called the nilradical of R.

Proof. Note that it is just the set $\sqrt{\{0\}}$. By Ex. 1 in the compulsory part, it is an ideal.
2. Show that the nilradical N of a commutative ring R is contained in every prime ideal of R.

Proof. By definition of prime ideals, $x^{k}=0 \in P \Rightarrow x \in P$ for any prime ideal P. Thus the nilradical is contained in each prime ideal.
3. What is the relationship between the radical \sqrt{I} of an ideal I in a commutative ring R and the nilradical of the quotient ring R / I ? Explain your answer carefully.

Proof. Let $\pi: R \rightarrow R / I$ be the natural projection. Then $\pi(\sqrt{I})=\sqrt{0_{R / I}}$. We give a proof: For any $x \in \sqrt{I}, x^{n} \in I$ for some $n>0$. Then $\pi(x)^{n} \in 0_{R / I}$, and so $\pi(x) \in$ $\sqrt{0_{R / I}}$. Therefore, $\pi(\sqrt{I}) \subseteq \sqrt{0_{R / I}}$.
Conversely, let $y \in \sqrt{0_{R / I}}$, then $y^{n}=0_{R / I}$ for some $n>0$. Since π is surjective, $\pi(x)=y$ for some $x \in R$. Then $\pi\left(x^{n}\right)=y^{n}=0_{R / I}$. Then $x^{n} \in I$, and so $x \in \sqrt{I}$. Then $y=\pi(x) \in \pi(\sqrt{I})$. It follows that $\pi(\sqrt{I})=\sqrt{0_{R / I}}$.
Since $\sqrt{I} \supseteq I=\operatorname{ker}(\pi), \sqrt{I}$ is the ideal corresponding to $\sqrt{0_{R / I}}$ via π.
4. Let F be a subfield of a field E.
(a) For $\alpha_{1}, \ldots, \alpha_{n} \in E$, define the evaluation map

$$
\phi_{\alpha_{1}, \cdots, \alpha_{n}}: F\left[x_{1}, \cdots, x_{n}\right] \rightarrow E
$$

by sending $f\left(x_{1}, \ldots, x_{n}\right)$ to $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Show that $\phi_{\alpha_{1}, \cdots, \alpha_{n}}$ is a ring homomorphism. We say that $\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in F^{n}$ is a zero of $f=f\left(x_{1}, \cdots, x_{n}\right)$ if $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$, or equivalently, if $\phi_{\alpha_{1}, \cdots, \alpha_{n}}(f)=0$.
(b) Given a subset $V \subset F^{n}$, show that the set of polynomials $f \in F\left[x_{1}, \cdots, x_{n}\right]$ such that every element in V is a zero of f forms an ideal of $F\left[x_{1}, \cdots, x_{n}\right]$.

Proof. (a) It is the multi-variable evaluation homomorphism, and can be realized as $\left.\left(e v_{\alpha_{1}} \circ e v_{\alpha_{2}} \circ \ldots\right.$ oev $\left.v_{\alpha_{n}}\right)\right|_{F\left[x_{1}, \cdots, x_{n}\right]}$, where each $e v_{\alpha_{r}}: E\left[x_{1}, \ldots, x_{r}\right]=E\left[x_{1}, \ldots, x_{r-1}\right]\left[x_{r}\right] \rightarrow$ $E\left[x_{1}, \ldots, x_{r-1}\right]$ is the evaluation homomorphism sending x_{r} to α_{r}.
(b) That set is $\bigcap_{\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in V} \operatorname{ker}\left(\phi_{\alpha_{1}, \cdots, \alpha_{n}}\right)$, and is an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$
5. Prove the equivalence of the following two statements:

Fundamental Theorem of Algebra: Every nonconstant polynomial in $\mathbb{C}[x]$ has a zero in \mathbb{C}.
Nullstellensatz for $\mathbb{C}[x]$: Let $f_{1}(x), \ldots, f_{r}(x) \in \mathbb{C}[x]$ and suppose that every $\alpha \in \mathbb{C}$ that is a zero of all r of these polynomials is also a zero of a polynomial $g(x)$ in $\mathbb{C}[x]$. Then some power of $g(x)$ is in the smallest ideal of $\mathbb{C}[x]$ that contains the r polynomials $f_{1}(x), \ldots, f_{r}(x)$.

Proof. (FTA $\Longrightarrow N$) Suppose we have FTA. Then every nonconstant polynomial in $\mathbb{C}[x]$ factors into $c\left(x-z_{1}\right)^{k_{1}} \ldots\left(x-z_{r}\right)^{k_{r}}$ for some $c, z_{1}, \ldots, z_{r} \in \mathbb{C}, k_{1}, \ldots, k_{r} \in \mathbb{Z}_{>0}$.
Let $f_{1}(x), \ldots, f_{r}(x) \in \mathbb{C}[x]$ and suppose that every $\alpha \in \mathbb{C}$ that is a zero of all r of these polynomials is also a zero of a polynomial $g(x)$ in $\mathbb{C}[x]$. Let $I=\left(f_{1}, \ldots, f_{r}\right)$. Since $\mathbb{C}[x]$ is a PID, $I=(h)$ for some $h \in \mathbb{C}[x]$.
Case 1. h is not a constant polynomial. Write $h=c\left(x-z_{1}\right)^{k_{1}} \ldots\left(x-z_{s}\right)^{k_{s}}$ as above. Note that each $f_{j} \in(h)$, so $h \mid f_{j}$ for each j. Then each z_{i} is a root of h, hence a root of f_{j} for each j. By assumption $g\left(z_{i}\right)=0$ for each $i=1,2, \ldots, s$. Then $\left(x-z_{1}\right) \ldots\left(x-z_{s}\right) \mid g$. Then $g^{\max \left(k_{1}, \ldots, k_{s}\right)} \in(h)=I$.
Case 2. h is a constant. If $h \neq 0$, then $(h)=(1)$, and $g \in(h)$. If $h=0$, then each $f_{i}=0$, so g is zero everywhere on \mathbb{C}, and so $g=0 \in(h)$.
$(F T A \Longleftarrow N)$ Conversely, suppose we have N. Let f be a nonconstant polynomial in $\mathbb{C}[x]$. Suppose f has no root in \mathbb{C}. Let $g=1$, then any root of f is a root of g, and by \mathbf{N}, $g^{n} \in(f)$. But then $1 \in(f)$. This is absurd because $\operatorname{deg}(f)>0$. Therefore, f has a root in \mathbb{C}.

