THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 8
 Due Date: 23th November 2023

Compulsory Part

1. Prove that if D is an integral domain, then $D[x]$ is an integral domain.

Proof. Let D be an integral domain. Then D is a commutative ring with unity $1=1_{D}$, and D has no zero divisors. Then $D[x]$ is also a commutative ring with unity $1_{D[x]}=1_{D}$. Let $f, g \in D[x]$. Suppose $f \neq 0, g \neq 0$. Then $f=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$, $g=b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0}$ for some $a_{i}, b_{j} \in D$ with $a_{n}, b_{m} \neq 0$. Then $a_{n} b_{m} \neq 0$ since D is an integral domain. Then the leading term of $f g$ is $a_{n} b_{m} x^{m+n}$, which is nonzero. Then $f g \neq 0$. It follows that $D[x]$ is an integral domain.
2. Let D be an integral domain and x an indeterminate.
(a) Describe the units in $D[x]$.
(b) Find the units in $\mathbb{Z}[x]$.
(c) Find the units in $\mathbb{Z}_{7}[x]$.

Proof. (a) The units in $D[x]$ are exactly the units in $D: D[x]^{\times}=D^{\times}$. We give a proof here:
For $a \in D^{\times}, a b=1$ for some $b \in D$. Since $a, b \in D[x]$, this implies that $a \in D[x]^{\times}$. Conversely, let $f \in D[x]^{\times}$, then $f g=1$ for some $g \in D[x]$. Then $\operatorname{deg}(f)+$ $\operatorname{deg}(g)=\operatorname{deg}(1)=0$. Then $\operatorname{deg}(f)=\operatorname{deg}(g)=0$, and so $f, g \in D$. Therefore, $f \in D^{\times}$.
(b) By (a), $\mathbb{Z}[x]^{\times}=\mathbb{Z}^{\times}=\{ \pm 1\}$
(c) $\operatorname{By}(\mathrm{a}), \mathbb{Z}_{7}[x]^{\times}=\mathbb{Z}_{7}^{\times}=\mathbb{Z}_{7}-\{0\}$.
3. Let R be a commutative ring with unity of prime characteristic p. Show that the map $\phi_{p}: R \rightarrow R$ given by $\phi_{p}(a)=a^{p}$ is a ring homomorphism (called the Frobenius homomorphism).

Proof. Let R be a commutative ring with unity of prime characteristic p. Let $\phi_{p}: R \rightarrow R$ be given by $\phi_{p}(a)=a^{p}$. Then $\phi_{p}(1)=1^{p}=1$. For any $a, b \in R, \phi_{p}(a b)=(a b)^{p}=$ $a^{p} b^{p}=\phi_{p}(a) \phi_{p}(b)$ because R is commutative.
On the other hand, $\phi_{p}(a+b)=(a+b)^{p}=\sum_{i=0}^{p}\binom{p}{i} a^{p-i} b^{i}$. Note that for $1 \leq i \leq p-1$, $p \left\lvert\,\binom{ p}{i}\right.$, and so $\binom{p}{i}=1$ in R because $\operatorname{char}(R)=p$. Then $\phi_{p}(a+b)=(a+b)^{p}=a^{p}+b^{p}=$ $\phi_{p}(a)+\phi_{p}(b)$.
It follows that ϕ_{p} is a ring homomorphism.
4. Show that for p a prime, the polynomial $x^{p}+a$ in $\mathbb{Z}_{p}[x]$ is reducible for any $a \in \mathbb{Z}_{p}$.

Proof. Let p be a prime, and let $a \in \mathbb{Z}_{p}$. Let $\phi_{p}: \mathbb{Z}_{p}[x] \rightarrow \mathbb{Z}_{p}[x]$ be the map as in Q3. Then ϕ is a ring homomorphism because $\operatorname{char}\left(\mathbb{Z}_{p}[x]\right)=p$. By Fermat's little theorem, $\phi(a)=a^{p}=a$ in \mathbb{Z}_{p}. Then $x^{p}+a=\phi_{p}(x)+\phi_{p}(a)=\phi_{p}(x+a)=(x+a)^{p}$. Therefore, $x^{p}+a$ is reducible.
5. Let $\sigma_{m}: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$ be the natural reminder homomorphism sending a to the remainder of a when divided by m, for $a \in \mathbb{Z}$.
(a) Show that the induced map $\bar{\sigma}_{m}: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{m}[x]$ given by

$$
\bar{\sigma}_{m}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\sigma_{m}\left(a_{0}\right)+\sigma_{m}\left(a_{1}\right) x+\cdots+\sigma_{m}\left(a_{n}\right) x^{n}
$$

is a homomorphism from $\mathbb{Z}[x]$ onto $\mathbb{Z}_{m}[x]$.
(b) Show that if $f(x) \in \mathbb{Z}[x]$ and $\bar{\sigma}_{m}(f(x))$ both have degree n and $\bar{\sigma}_{m}(f(x))$ does not factor in $\mathbb{Z}_{m}[x]$ into two polynomials of degree less than n, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(c) Use part (b) to show that $x^{3}+17 x+36$ is irreducible in $\mathbb{Q}[x]$.

Proof. (a) In general, let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism, then $\bar{\phi}: R[x] \rightarrow$ $R^{\prime}[x]$ given by $\bar{\phi}\left(\sum_{i=0}^{n} r_{i} x^{i}\right)=\sum_{i=0}^{n} \phi\left(r_{i}\right) x^{i}$ for $n \in \mathbb{Z}_{\geq 0}, r_{0}, \ldots, r_{n} \in R$ is a ring homomorphism. We prove this more general statement, and (a) will follow by taking ϕ as $\sigma_{m}: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$.
Since ϕ is a ring homomorphism, $\phi\left(1_{R}\right)=1_{R^{\prime}}$. Then $\bar{\phi}\left(1_{R[x]}\right)=\bar{\phi}\left(1_{R}\right)=\phi\left(1_{R}\right)=$ $1_{R^{\prime}}=1_{R^{\prime}[x]}$.
Let $f=\sum_{i=0}^{N} a_{i} x^{i}, g=\sum_{i=0}^{N} b_{i} x^{i}$, where N is some large enough integer. Then $f+$ $g=\sum_{i=0}^{N}\left(a_{i}+b_{i}\right) x^{i}$. Then $\phi(f+g)=\sum_{i=0}^{N} \phi\left(a_{i}+b_{i}\right) x^{i}=\sum_{i=0}^{N}\left(\phi\left(a_{i}\right)+\phi\left(b_{i}\right)\right) x^{i}=$ $\sum_{i=0}^{N} \phi\left(a_{i}\right) x^{i}+\sum_{i=0}^{N} \phi\left(b_{i}\right) x^{i}=\phi(f)+\phi(g)$.
On the other hand, $f g=\sum_{k=0}^{2 N}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}$. Then $\phi(f g)=\sum_{k=0}^{2 N} \phi\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}=$ $\sum_{k=0}^{2 N}\left(\sum_{i+j=k} \phi\left(a_{i}\right) \phi\left(b_{j}\right)\right) x^{k}=\left(\sum_{i=0}^{N} \phi\left(a_{i}\right) x^{i}\right)\left(\sum_{i=0}^{N} \phi\left(b_{i}\right) x^{i}\right)=\phi(f) \phi(g)$.
Then $\bar{\phi}$ is a ring homomorphism.
(b) Suppose $f(x) \in \mathbb{Z}[x]$ and $\bar{\sigma}_{m}(f(x))$ both have degree n and $\bar{\sigma}_{m}(f(x))$ does not factor in $\mathbb{Z}_{m}[x]$ into two polynomials of degree less than n.
Suppose $f(x)$ is reducible in $\mathbb{Q}[x]$, then f is reducible into polynomials of lower degrees in $\mathbb{Z}[x]$ by Gauss lemma. That is, $f=g h$ for some $g, h \in \mathbb{Z}[x]$ with $0<\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.
Then $\sigma_{m}(f)=\sigma_{m}(g) \sigma_{m}(h)$ by (a). Note that $\operatorname{deg}\left(\sigma_{m}(g)\right) \leq \operatorname{deg}(g)<\operatorname{deg}(f)=$ $\operatorname{deg}\left(\sigma_{m}(f)\right)$, and $\operatorname{deg}\left(\sigma_{m}(h)\right) \leq \operatorname{deg}(h)<\operatorname{deg}(f)=\operatorname{deg}\left(\sigma_{m}(f)\right)$. This contradicts the assumption on the irreducibility of $\sigma_{m}(f)$.
(c) Let $f=x^{3}+17 x+36$. Then $\sigma_{5}(f)=x^{3}+2 x+1 \in \mathbb{Z}_{5}[x]$. Note that $\sigma_{5}(f)(0)=$ $1, \sigma_{5}(f)(1)=4, \sigma_{5}(f)(2)=3, \sigma_{5}(f)(3)=4, \sigma_{5}(f)(4)=3$. Then $\sigma_{5}(f)$ has no root in \mathbb{Z}_{5}. Since $\operatorname{deg}\left(\sigma_{5}(f)\right)=\operatorname{deg}(f)=3, \sigma_{5}(f)$ is irreducible in $\mathbb{Z}_{5}[x]$. By (b), $f=x^{3}+17 x+36$ is irreducible in $\mathbb{Q}[x]$.
6. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism and let N be an ideal of R.
(a) Show that $\phi[N]$ is an ideal of $\phi[R]$.
(b) Given an example to show that $\phi[N]$ need not be an ideal of R^{\prime}.
(c) Let N^{\prime} be an ideal either of $\phi[R]$ or of R^{\prime}. Show that $\phi^{-1}\left[N^{\prime}\right]$ is an ideal of R.

Proof. (a) This is Property 5 of Proposition 8.1 in Tutorial 8. We copy the proof here.
Since N is an ideal of R, it is an additive subgroup of R, and for $r \in R, n \in$ N, $r n, n r \in N$. Then $\phi(N)$ is an additive subgroup of $\phi(R)$ and for $x \in \phi(R)$, $y \in \phi(N)$, there exists $r \in R, n \in N$ such that $\phi(r)=x, \phi(n)=y$. Then $x y=\phi(r) \phi(n)=\phi(r n) \in \phi(N)$, and $y x=\phi(n) \phi(r)=\phi(n r) \in \phi(N)$. Then, $\phi(N)$ is an ideal of $\phi(R)$.
(b) Let $R=\mathbb{Z}, R^{\prime}=\mathbb{Q}$, and $\phi: \mathbb{Z} \rightarrow \mathbb{Q}$ be the inclusion map. Let $N=2 \mathbb{Z}$. Then N is an ideal of R, while $\phi(N)=2 \mathbb{Z}$ is not an ideal of R^{\prime}, because the only ideals of R^{\prime} are 0 and R^{\prime}.
(c) This is Property 6 of Proposition 8.1 in Tutorial 8. We copy the proof here.

If N^{\prime} is an ideal of R^{\prime}, then it is also an ideal of $\phi(R)$. So we suppose N^{\prime} is an ideal of $\phi(R)$. Then $\phi^{-1}\left(N^{\prime}\right)$ is an additive subgroup of R. Let $r \in R, n \in \phi^{-1}\left(N^{\prime}\right)$, $\phi(r) \in \phi(R)$ and $\phi(n) \in N^{\prime}$. Then $\phi(r n)=\phi(r) \phi(n) \in N^{\prime}, \phi(n r)=\phi(n) \phi(r) \in$ N^{\prime}. Then $r n, n r \in \phi^{-1}\left(N^{\prime}\right)$. It follows that $\phi^{-1}\left(N^{\prime}\right)$ is an ideal of R.

Optional Part

1. Let F be a field. An element ϕ of F^{F} is a polynomial function on F, if there exists $f(x) \in F[x]$ such that $\phi(a)=f(a)$ for all $a \in F$.
(a) Show that the set P_{F} of all polynomial functions on F forms a subring of F^{F}.
(b) Give an example to show that the ring P_{F} is not necessarily isomorphic to $F[x]$.

Proof. (a) Let F^{F} be the ring of functions from F to itself, with addition and multiplication be defined by $(f+g)(x):=f(x)+g(x)$ for all $x \in F$ and $(f \cdot g)(x)=f(x) g(x)$ for all x. We take it for granted that F^{F} forms a ring under these operations.
Let $\alpha: F[x] \rightarrow F^{F}$ be the map such that $\alpha(f)(a)=f(a)=\operatorname{ev}_{a}(f)$ for any $a \in F$. Then α maps a polynomial to its corresponding function.
Note that $\alpha(1)=1=1_{F^{F}}$, the function that sends F to 1 . For $f, g \in F[x]$, for any $a \in F, \alpha(f+g)(a)=e v_{a}(f+g)=e v_{a}(f)+e v_{a}(g)=\alpha(f)(a)+\alpha(g)(a)=$ $(\alpha(f)+\alpha(g))(a)$. Then $\alpha(f+g)=\alpha(f)+\alpha(g)$. Similarly, $\alpha(f \cdot g)(a)=e v_{a}(f \cdot g)=$ $e v_{a}(f) \cdot e v_{a}(g)=\alpha(f)(a) \cdot \alpha(g)(a)=(\alpha(f) \cdot \alpha(g))(a)$. Then $\alpha(f \cdot g)=\alpha(f) \cdot \alpha(g)$. Therefore, α is a ring homomorphism.
Note that $P_{F}=\alpha(F[x])$. Therefore, P_{F} is a subring of F^{F}.
(b) See question 2.

Remark. On the other hand, when F is an infinite field, α is injective, and thus $P_{F} \simeq$ $F[x]$. The reason is that if $\alpha(f)=0$, then $f(a)=0$ for any $a \in F$. When $|F|=\infty$. This implies $f=0$ by the root theorem.
2. Give an example to show that, when F is a finite field, P_{F} and $F[x]$ do not even have the same number of elements.

Proof. Let F be a finite field with $|F|=q$. Then $\left|P_{F}\right| \leq\left|F^{F}\right|=q^{q}<\infty$, while $|F[x]|=\infty$.
3. Let F be a field of characteristic zero and let D be the formal polynomial differentiation map, i.e.

$$
D\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right):=a_{1}+2 \cdot a_{2} x+\cdots+n \cdot a_{n} x^{n-1} .
$$

(a) Show that $D: F[x] \rightarrow F[x]$ is a group homomorphism from $(F[x],+)$ into itself. Is D a ring homomorphism?
(b) Find the kernel of D.
(c) Find the image of $F[x]$ under D.

Proof. Let F be a field of characteristic zero and let D be the formal polynomial differentiation map.
(a) Let $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in F$. Note that $D\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=1}^{n} i a_{i} x^{i-1}$. Then $D\left(\sum_{i=0}^{n} a_{i} x^{i}+\sum_{i=0}^{n} b_{i} x^{i}\right)=D\left(\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}\right)=\sum_{i=0}^{n} i\left(a_{i}+b_{i}\right) x^{i-1}=\sum_{i=1}^{n} i a_{i} x^{i-1}+$ $\sum_{i=1}^{n} i b_{i} x^{i-1}=D\left(\sum_{i=1}^{n} a_{i} x^{i}\right)+D\left(\sum_{i=1}^{n} b_{i} x^{i}\right)$.
Note that however $D(1)=0$, so it is not a ring homomorphism.
(b) Let $f=\sum_{i=0}^{n} a_{i} x^{i}$. Suppose $D(f)=0$. Then $i a_{i}=0$ for any $i>0$. Since $\operatorname{char}(F)=0, a_{i}=0$ for $i>0$. Then $f=a_{0}$. Conversely, $D\left(a_{0}\right)=0$. Therefore, $\operatorname{ker}(D)=F$.
(c) Since $\operatorname{char}(F)=0$, each $i \in \mathbb{Z}_{>0}$ is invertible in F. For any $f=\sum_{i=0}^{n} a_{i} x^{i} \in F[x]$, let $g=\sum_{i=0}^{n} \frac{a_{i} x^{i+1}}{i+1}$. Then $D(g)=f$. Therefore D is surjective, that is, the image of $F[x]$ under D is $F[x]$.
4. Let A and B be ideals of a ring R. The product $A B$ of A and B is defined by

$$
A B=\left\{\sum_{i=1}^{n} a_{i} b_{i}: a_{i} \in A, b_{i} \in B, n \in \mathbb{Z}^{+}\right\} .
$$

(a) Show that $A B$ is an ideal in R.
(b) Show that $A B \subseteq(A \cap B)$.

Proof. (a) Let $\sum_{i=1}^{n} a_{i} b_{i} \in A B$, then its additive inverse $-\sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=1}^{n}\left(-a_{i}\right) b_{i} \in$ $A B$, and it is clear that $A B$ is closed under addition. If $r \in R$ is any element, since A, B are ideals, we have $r \sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=1}^{n}\left(r a_{i}\right) b_{i} \in A B$ as $r a_{i} \in A$ and $\left(\sum_{i=1}^{n} a_{i} b_{i}\right) r=\sum_{i=1}^{n} a_{i}\left(b_{i} r\right) \in A B$ as $b_{i} r \in B$.
(b) Since A, B are ideals, $a_{i} b_{i} \in A \cap B$ for any $\sum_{i=1}^{n} a_{i} b_{i} \in A B$, therefore so is their sum.
5. Let A and B be ideals of a commutative ring R. The quotient $A: B$ of A by B is defined by

$$
A: B=\{r \in R: r b \in A \text { for all } b \in B\}
$$

Show that $A: B$ is an ideal of R.
Proof. Let $r, s \in A: B$, then $r b, s b \in A$ for all $b \in B$, therefore $(r+s) b,-r b \in A$ for all $b \in B$, since A is an additive subgroup. Let $x \in R$, then $x r b \in A$ for any $b \in B$ since A is an ideal and $r b \in A$. For commutative ring, we only have to check one side, therefore $A: B$ is indeed an ideal.
6. Let R and R^{\prime} be rings and let N and N^{\prime} be ideals of R and R^{\prime}, respectively. Let ϕ be a homomorphism of R into R^{\prime}. Show that ϕ induces a natural homomorphism $\phi_{*}: R / N \rightarrow$ R^{\prime} / N^{\prime} if $\phi[N] \subseteq N^{\prime}$.

Proof. Let R and R^{\prime} be rings and let N and N^{\prime} be ideals of R and R^{\prime}, respectively. Let ϕ be a homomorphism of R into R^{\prime}. Suppose $\phi[N] \subseteq N^{\prime}$. Let $\pi: R^{\prime} \rightarrow R^{\prime} / N^{\prime}$ be the natural projection. Then $\psi:=\pi \circ \phi: R \rightarrow R^{\prime} / N^{\prime}$ is a ring homomorphism. Now, $\psi(N)=\pi(\phi(N)) \subseteq \pi\left(N^{\prime}\right)=0$. Then ψ factors through R / N, that is, ψ induces a natural homomorphism $\phi_{*}: R / N \rightarrow R^{\prime} / N^{\prime}$.

