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Compulsory Part

1. Prove that if D is an integral domain, then D[x] is an integral domain.

Proof. Let D be an integral domain. Then D is a commutative ring with unity 1 = 1D,
and D has no zero divisors. Then D[x] is also a commutative ring with unity 1D[x] = 1D.
Let f, g ∈ D[x]. Suppose f ̸= 0, g ̸= 0. Then f = anx

n + an−1x
n−1 + ... + a0,

g = bmx
m+bm−1x

m−1+...+b0 for some ai, bj ∈ D with an, bm ̸= 0. Then anbm ̸= 0 since
D is an integral domain. Then the leading term of fg is anbmxm+n, which is nonzero.
Then fg ̸= 0. It follows that D[x] is an integral domain.

2. Let D be an integral domain and x an indeterminate.

(a) Describe the units in D[x].

(b) Find the units in Z[x].
(c) Find the units in Z7[x].

Proof. (a) The units in D[x] are exactly the units in D: D[x]× = D×. We give a proof
here:
For a ∈ D×, ab = 1 for some b ∈ D. Since a, b ∈ D[x], this implies that a ∈ D[x]×.
Conversely, let f ∈ D[x]×, then fg = 1 for some g ∈ D[x]. Then deg(f) +
deg(g) = deg(1) = 0. Then deg(f) = deg(g) = 0, and so f, g ∈ D. Therefore,
f ∈ D×.

(b) By (a), Z[x]× = Z× = {±1}
(c) By (a), Z7[x]

× = Z×
7 = Z7 − {0}.

3. Let R be a commutative ring with unity of prime characteristic p. Show that the map
ϕp : R → R given by ϕp(a) = ap is a ring homomorphism (called the Frobenius
homomorphism).

Proof. Let R be a commutative ring with unity of prime characteristic p. Let ϕp : R → R
be given by ϕp(a) = ap. Then ϕp(1) = 1p = 1. For any a, b ∈ R, ϕp(ab) = (ab)p =
apbp = ϕp(a)ϕp(b) because R is commutative.

On the other hand, ϕp(a+ b) = (a+ b)p =
∑p

i=0

(
p
i

)
ap−ibi. Note that for 1 ≤ i ≤ p− 1,

p|
(
p
i

)
, and so

(
p
i

)
= 1 in R because char(R) = p. Then ϕp(a+ b) = (a+ b)p = ap + bp =

ϕp(a) + ϕp(b).

It follows that ϕp is a ring homomorphism.
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4. Show that for p a prime, the polynomial xp + a in Zp[x] is reducible for any a ∈ Zp.

Proof. Let p be a prime, and let a ∈ Zp. Let ϕp : Zp[x] → Zp[x] be the map as in Q3.
Then ϕ is a ring homomorphism because char(Zp[x]) = p. By Fermat’s little theorem,
ϕ(a) = ap = a in Zp. Then xp + a = ϕp(x) + ϕp(a) = ϕp(x+ a) = (x+ a)p. Therefore,
xp + a is reducible.

5. Let σm : Z → Zm be the natural reminder homomorphism sending a to the remainder of
a when divided by m, for a ∈ Z.

(a) Show that the induced map σm : Z[x] → Zm[x] given by

σm(a0 + a1x+ · · ·+ anx
n) = σm(a0) + σm(a1)x+ · · ·+ σm(an)x

n

is a homomorphism from Z[x] onto Zm[x].

(b) Show that if f(x) ∈ Z[x] and σm(f(x)) both have degree n and σm(f(x)) does not
factor in Zm[x] into two polynomials of degree less than n, then f(x) is irreducible
in Q[x].

(c) Use part (b) to show that x3 + 17x+ 36 is irreducible in Q[x].

Proof. (a) In general, let ϕ : R → R′ be a ring homomorphism, then ϕ : R[x] →
R′[x] given by ϕ(

∑n
i=0 rix

i) =
∑n

i=0 ϕ(ri)x
i for n ∈ Z≥0, r0, ..., rn ∈ R is a ring

homomorphism. We prove this more general statement, and (a) will follow by taking
ϕ as σm : Z → Zm.
Since ϕ is a ring homomorphism, ϕ(1R) = 1R′ . Then ϕ(1R[x]) = ϕ(1R) = ϕ(1R) =
1R′ = 1R′[x].

Let f =
N∑
i=0

aix
i, g =

N∑
i=0

bix
i, where N is some large enough integer. Then f +

g =
N∑
i=0

(ai + bi)x
i. Then ϕ(f + g) =

N∑
i=0

ϕ(ai + bi)x
i =

N∑
i=0

(ϕ(ai) + ϕ(bi))x
i =

N∑
i=0

ϕ(ai)x
i +

N∑
i=0

ϕ(bi)x
i = ϕ(f) + ϕ(g).

On the other hand, fg =
2N∑
k=0

(
∑

i+j=k

aibj)x
k. Then ϕ(fg) =

2N∑
k=0

ϕ(
∑

i+j=k

aibj)x
k =

2N∑
k=0

(
∑

i+j=k

ϕ(ai)ϕ(bj))x
k = (

N∑
i=0

ϕ(ai)x
i)(

N∑
i=0

ϕ(bi)x
i) = ϕ(f)ϕ(g).

Then ϕ is a ring homomorphism.

(b) Suppose f(x) ∈ Z[x] and σm(f(x)) both have degree n and σm(f(x)) does not
factor in Zm[x] into two polynomials of degree less than n.
Suppose f(x) is reducible in Q[x], then f is reducible into polynomials of lower
degrees in Z[x] by Gauss lemma. That is, f = gh for some g, h ∈ Z[x] with
0 < deg(g), deg(h) < deg(f).
Then σm(f) = σm(g)σm(h) by (a). Note that deg(σm(g)) ≤ deg(g) < deg(f) =
deg(σm(f)), and deg(σm(h)) ≤ deg(h) < deg(f) = deg(σm(f)). This contradicts
the assumption on the irreducibility of σm(f).
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(c) Let f = x3 + 17x+ 36. Then σ5(f) = x3 + 2x+ 1 ∈ Z5[x]. Note that σ5(f)(0) =
1, σ5(f)(1) = 4, σ5(f)(2) = 3, σ5(f)(3) = 4, σ5(f)(4) = 3. Then σ5(f) has no
root in Z5. Since deg(σ5(f)) = deg(f) = 3, σ5(f) is irreducible in Z5[x]. By (b),
f = x3 + 17x+ 36 is irreducible in Q[x].

6. Let ϕ : R → R′ be a ring homomorphism and let N be an ideal of R.

(a) Show that ϕ[N ] is an ideal of ϕ[R].

(b) Given an example to show that ϕ[N ] need not be an ideal of R′.

(c) Let N ′ be an ideal either of ϕ[R] or of R′. Show that ϕ−1[N ′] is an ideal of R.

Proof. (a) This is Property 5 of Proposition 8.1 in Tutorial 8. We copy the proof here.
Since N is an ideal of R, it is an additive subgroup of R, and for r ∈ R, n ∈
N , rn, nr ∈ N . Then ϕ(N) is an additive subgroup of ϕ(R) and for x ∈ ϕ(R),
y ∈ ϕ(N), there exists r ∈ R, n ∈ N such that ϕ(r) = x, ϕ(n) = y. Then
xy = ϕ(r)ϕ(n) = ϕ(rn) ∈ ϕ(N), and yx = ϕ(n)ϕ(r) = ϕ(nr) ∈ ϕ(N). Then,
ϕ(N) is an ideal of ϕ(R).

(b) Let R = Z, R′ = Q, and ϕ : Z → Q be the inclusion map. Let N = 2Z. Then N is
an ideal of R, while ϕ(N) = 2Z is not an ideal of R′, because the only ideals of R′

are 0 and R′.

(c) This is Property 6 of Proposition 8.1 in Tutorial 8. We copy the proof here.
If N ′ is an ideal of R′, then it is also an ideal of ϕ(R). So we suppose N ′ is an ideal
of ϕ(R). Then ϕ−1(N ′) is an additive subgroup of R. Let r ∈ R, n ∈ ϕ−1(N ′),
ϕ(r) ∈ ϕ(R) and ϕ(n) ∈ N ′. Then ϕ(rn) = ϕ(r)ϕ(n) ∈ N ′, ϕ(nr) = ϕ(n)ϕ(r) ∈
N ′. Then rn, nr ∈ ϕ−1(N ′). It follows that ϕ−1(N ′) is an ideal of R.
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Optional Part

1. Let F be a field. An element ϕ of F F is a polynomial function on F , if there exists
f(x) ∈ F [x] such that ϕ(a) = f(a) for all a ∈ F .

(a) Show that the set PF of all polynomial functions on F forms a subring of F F .

(b) Give an example to show that the ring PF is not necessarily isomorphic to F [x].

Proof. (a) Let F F be the ring of functions from F to itself, with addition and multiplica-
tion be defined by (f+g)(x) := f(x)+g(x) for all x ∈ F and (f ·g)(x) = f(x)g(x)
for all x. We take it for granted that F F forms a ring under these operations.
Let α : F [x] → F F be the map such that α(f)(a) = f(a) = eva(f) for any a ∈ F .
Then α maps a polynomial to its corresponding function.
Note that α(1) = 1 = 1FF , the function that sends F to 1. For f, g ∈ F [x], for
any a ∈ F , α(f + g)(a) = eva(f + g) = eva(f) + eva(g) = α(f)(a) + α(g)(a) =
(α(f)+α(g))(a). Then α(f+g) = α(f)+α(g). Similarly, α(f ·g)(a) = eva(f ·g) =
eva(f) ·eva(g) = α(f)(a) ·α(g)(a) = (α(f) ·α(g))(a). Then α(f ·g) = α(f) ·α(g).
Therefore, α is a ring homomorphism.
Note that PF = α(F [x]). Therefore, PF is a subring of F F .

(b) See question 2.

Remark. On the other hand, when F is an infinite field, α is injective, and thus PF ≃
F [x]. The reason is that if α(f) = 0, then f(a) = 0 for any a ∈ F . When |F | = ∞. This
implies f = 0 by the root theorem.

2. Give an example to show that, when F is a finite field, PF and F [x] do not even have the
same number of elements.

Proof. Let F be a finite field with |F | = q. Then |PF | ≤ |F F | = qq < ∞, while
|F [x]| = ∞.

3. Let F be a field of characteristic zero and let D be the formal polynomial differentiation
map, i.e.

D(a0 + a1x+ a2x
2 + · · ·+ anx

n) := a1 + 2 · a2x+ · · ·+ n · anxn−1.

(a) Show that D : F [x] → F [x] is a group homomorphism from (F [x],+) into itself.
Is D a ring homomorphism?

(b) Find the kernel of D.

(c) Find the image of F [x] under D.

Proof. Let F be a field of characteristic zero and let D be the formal polynomial differ-
entiation map.
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(a) Let a0, ..., an, b0, ..., bn ∈ F . Note that D(
∑n

i=0 aix
i) =

∑n
i=1 iaix

i−1. Then
D(

∑n
i=0 aix

i+
∑n

i=0 bix
i) = D(

∑n
i=0(ai+bi)x

i) =
∑n

i=0 i(ai+bi)x
i−1 =

∑n
i=1 iaix

i−1+∑n
i=1 ibix

i−1 = D(
∑n

i=1 aix
i) +D(

∑n
i=1 bix

i).

Note that however D(1) = 0, so it is not a ring homomorphism.

(b) Let f =
∑n

i=0 aix
i. Suppose D(f) = 0. Then iai = 0 for any i > 0. Since

char(F ) = 0, ai = 0 for i > 0. Then f = a0. Conversely, D(a0) = 0. Therefore,
ker(D) = F .

(c) Since char(F ) = 0, each i ∈ Z>0 is invertible in F . For any f =
∑n

i=0 aix
i ∈ F [x],

let g =
∑n

i=0
aix

i+1

i+1
. Then D(g) = f . Therefore D is surjective, that is, the image

of F [x] under D is F [x].

4. Let A and B be ideals of a ring R. The product AB of A and B is defined by

AB =

{
n∑

i=1

aibi : ai ∈ A, bi ∈ B, n ∈ Z+

}
.

(a) Show that AB is an ideal in R.

(b) Show that AB ⊆ (A ∩B).

Proof. (a) Let
∑n

i=1 aibi ∈ AB, then its additive inverse −
∑n

i=1 aibi =
∑n

i=1(−ai)bi ∈
AB, and it is clear that AB is closed under addition. If r ∈ R is any element,
since A,B are ideals, we have r

∑n
i=1 aibi =

∑n
i=1(rai)bi ∈ AB as rai ∈ A and

(
∑n

i=1 aibi)r =
∑n

i=1 ai(bir) ∈ AB as bir ∈ B.

(b) Since A,B are ideals, aibi ∈ A ∩ B for any
∑n

i=1 aibi ∈ AB, therefore so is their
sum.

5. Let A and B be ideals of a commutative ring R. The quotient A : B of A by B is defined
by

A : B = {r ∈ R : rb ∈ A for all b ∈ B}.

Show that A : B is an ideal of R.

Proof. Let r, s ∈ A : B, then rb, sb ∈ A for all b ∈ B, therefore (r+ s)b,−rb ∈ A for all
b ∈ B, since A is an additive subgroup. Let x ∈ R, then xrb ∈ A for any b ∈ B since A
is an ideal and rb ∈ A. For commutative ring, we only have to check one side, therefore
A : B is indeed an ideal.

6. Let R and R′ be rings and let N and N ′ be ideals of R and R′, respectively. Let ϕ be a
homomorphism ofR intoR′. Show that ϕ induces a natural homomorphism ϕ∗ : R/N →
R′/N ′ if ϕ[N ] ⊆ N ′.
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Proof. Let R and R′ be rings and let N and N ′ be ideals of R and R′, respectively. Let
ϕ be a homomorphism of R into R′. Suppose ϕ[N ] ⊆ N ′. Let π : R′ → R′/N ′ be
the natural projection. Then ψ := π ◦ ϕ : R → R′/N ′ is a ring homomorphism. Now,
ψ(N) = π(ϕ(N)) ⊆ π(N ′) = 0. Then ψ factors through R/N , that is, ψ induces a
natural homomorphism ϕ∗ : R/N → R′/N ′.


