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Compulsory Part

1. Let G be a finite group, and suppose that there exist representatives g1, . . . , gr of the r
distinct conjugacy classes in G such that gigj = gjgi for all i, j. Show that G is abelian.

Proof. Consider G acting on itself by conjugations. Fix a particular gi, then for any
x ∈ G, we know that it is belongs to some conjugacy class, i.e. gxg−1 = gj for some g.
By assumption gj commutes with gi and so gxg−1 ∈ ZG(gi) the stabilizer of gi. In other
words, x ∈ g−1ZG(gi)g. This implies that x ∈

⋃
g∈G g−1ZG(gi)g. So we necessarily have

G =
⋃

g∈G g−1ZG(gi)g.

Recall from tutorial 6 question 4b that this only happens when ZG(gi) = G because for a
proper subgroup H ⪇ G there are at most [G : H] distinct subgroups of the form gHg−1

and so the union contains at most [G : H](|H| − 1) + 1 < |G| many elements.

Therefore gi commutes with all of G for any i, so the conjugacy class is just a single-
ton {gi}. Since this holds for all representative of each individual conjugacy class, this
implies that G is abelian.

2. Let G be a finite group and let primes p and q ̸= p divide |G|. Prove that if G has
precisely one proper Sylow p-subgroup, then it must be a normal subgroup, and hence G
is not simple.

Proof. By the second Sylow theorem, any Sylow p-subgroups are conjugate to each
other. If P is the unique proper Sylow p-subgroup of G, then gPg−1 is again a Sylow
p-subgroup, which must be itself. So for arbitrary g ∈ G we have gPg−1 = P , hence it
is a proper normal subgroup.

3. Let G be a finite group and let p be a prime dividing |G|. Let P be a Sylow p-subgroup
of G.

(a) Show that P is the only Sylow p-subgroup of NG(NG(P )).

(b) Using part (a) and applying Sylow Theorems, show that NG(NG(P )) = NG(P ).

Proof.

(a) Recall that NG(P ) is the normalizer of P , i.e. consisting of all g so that gPg−1 = P .
By definition P is normal in NG(P ) and so it is the unique Sylow p-subgroup of
NG(P ). Now let h ∈ NG(NG(P )), then hNG(P )h−1 = NG(P ). Restricting this on
P , by order consideration hPh−1 must be some Sylow p-subgroup inside NG(P ) so
hPh−1 = P by uniqueness. This implies that P is also normal in NG(NG(P )), so
it is also the unique Sylow p-subgroup.

(b) Recall that NG(P ) = {g ∈ G : gPg−1 = P}, since any h ∈ NG(NG(P )) satisfies
this condition by part (a), we have NG(NG(P )) = NG(P ).
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4. Show that there are no simple groups of order prm, where p is a prime, r is a positive
integer, and 1 < m < p.

Proof. Suppose G is a group of order prm with 1 < m < p, consider Sylow p-subgroups
of G, by third Sylow theorem, np = pik ≡ 1 mod p for 0 ≤ i ≤ r and 1 | k | m. This
implies that i must be zero and k = 1. So np = 1 and there is a unique Sylow p-subgroup
of G, which is proper and normal. So G cannot be simple.

5. Let G be a group of order 6. Suppose G is not abelian.

(a) Show that G has three subgroups of order 2.

(b) Show that there is a homomorphism ϕ : G → S3 with | ker(ϕ)| ≤ 2. [Hint: Consider
the action of G on the set of left cosets of a subgroup of order 2 in G (as in HW6,
Optional Q.5).]

(c) Show that G ≃ S3.

Proof.

(a) If G is of order 6 and nonabelian, then by third Sylow theorem n3 ≡ 1 mod 3 and
n3|6 imply that n3 = 1. While n2 ≡ 1 mod 2 and n2|6 imply that n2 can be 1
or 3. If n2 was also 1, then the Sylow subgroups are isomorphic to Z2 and Z3, and
G ∼= Z2 × Z3, which is abelian. This gives a contradiction. So n2 = 3 and there are
three subgroups of order 2.

(b) Suppose P is one of the Sylow 2-subgroups, then G acts on the left coset space G/P
by left multiplication. As |G/P | = 3, this group action induces a homomorphism
ϕ : G → S3. Since the action is transitive, the image of ϕ consists of (123). So
|ϕ(G)| ≥ 3, or ker(ϕ) ≤ 2.

(c) Consider the non-identity element x of P , we would like to prove that x acting on
left P -cosets nontrivially, i.e ϕ(x) ̸= id ∈ S3. Assume for the sake of contradiction
that ϕ(x) = id, then for an arbitrary y ∈ G, y lies in some coset yP and we
have x · yP = yP since we have assumed that x acts trivially. This implies that
y−1xy ∈ P . So we have y−1Py = P . But since y is arbitrary, this would imply
that P is a normal subgroup, contradicting the fact that P is not the unique Sylow
2-subgroup.
Now x acts nontrivially on G/P = {P, g1P, g2P}, and x fixes P because x ∈ P .
So it swaps the two other cosets. In other words, ϕ(x) is a 2-cycle in S3. Since
ϕ(G) contains a 2-cycle and a 3-cycle, it is the whole group. And ϕ : G → S3 is an
isomorphism.

6. (a) Let G be a finite group, and H,K < G. Show that

|HK| = |H| · |K|
|H ∩K|

.

(Note that HK may not be a subgroup of G, so the above is just an equality between
orders of sets.)

(b) Suppose that G is a finite group of order 48.
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i. Applying Sylow Theorems, show that the number n2 of Sylow 2-subgroups in
G is either 1 or 3.

ii. Suppose that n2 = 3 and let H,K be two distinct Syloew 2-subgroups in G.
Show that |H ∩ K| = 8 by applying part (a). From this and considering the
normalizer NG(H ∩K), deduce that H ∩K is normal in G, thereby showing
that G cannot be simple.

Proof.

(a) Suppose H ×K acts on HK by (h, k) · g = hgk−1. One can check that

(h1, k1)(h2, k2) · g = h1h2gk
−1
2 k−1

1 = (h1h2)g(k1k2)
−1 = (h1h2, k1k2) · g

And (e, e) · g = g. Furthermore given g, g′ ∈ HK, we can write g = hk and
g′ = h′k′ and hence g′ = (h′h−1, k′−1k) · g. So this defines a transitive action. Note
that any stabilizer (h, k) of e ∈ HK satisfies (h, k) · e = hk−1 = e. In other words,
(H ×K)e = {(h, k) ∈ H ×K : h = k} ∼= H ∩K. By orbit-stabilizer theorem,

|HK| = |H ×K|
|(H ×K)e|

=
|H| · |K|
|H ∩K|

.

(b) i. For a group G of order 48 = 24 · 3, third Sylow theorem implies that n2 ≡ 1
mod 2 and n2|48. Since n2 cannot be even, this forces n2 = 1 or 3.

ii. If n2 = 3, for two distinct Sylow 2-subgroups H,K, we have that H ∩ K is
also a 2-group, with order possibly given by 8, 4, 2 or 1. By considering part
(a), 48 ≥ |HK| = 162/2k where k = 3, 2, 1 or 0. As 256/4 = 64 > 48, the
only possible value of |H ∩ K| is 8,. Now because H ∩ K has index 2 in H
and K, it is a normal subgroup of both H and K. By definition NG(H ∩ K)
is the largest subgroup so that H ∩K is normal in, so our observation implies
that H,K ≤ NG(H ∩K). Then HK ⊂ NG(H ∩K). Since |HK| = 32, we
immediately have NG(H ∩K) = G. And so H ∩K is in fact a proper normal
subgroup in G. So that G is not simple.

Optional Part

1. Let G be a finite group of odd order. Suppose that g ∈ G and g−1 lie in the same
conjugacy class. Show that g = e.

Proof. Note that if hgh−1 = g−1, then hg−1h−1 = (hgh−1)−1 = g. We can let ⟨h⟩ acts
on the set X = {g, g−1}, which has cardinality 1 or 2 depending on whether g = e or not.
But ⟨h⟩ has odd order and the action is transitive, this forces |X| = ord (h)

d
where d is the

order of stabilizer of g, which is odd again. This implies that |X| must be an odd number,
hence it is equal to 1 and g = e.

2. Show that every group of order 30 contains a subgroup of order 15.

Proof. Let G be a group of order 30, then n3 ≡ 1 mod 3 so there can be 1 or 10 Sylow
3-subgroups. Likewise n5 ≡ 1 mod 5, so there can be 1 or 6 Sylow 5-subgroups. It is
impossible to have both n3 = 10 and n5 = 6 because the Sylow p-subgroups are cyclic
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and have trivial intersection. So having 10 Sylow 3-subgroups would give 10 · 2 = 20
elements of order 3, and having 6 Sylow 5-subgroups would give 4 · 6 = 24 elements of
order 5, clearly exceeding the total number of elements in G.

As a result, either the Sylow 3-subgroup or the Sylow 5-subgroup is unique, and hence is
normal. Say we have a normal Sylow 3-subgroup P , then if Q is any Sylow 5-subgroup,
PQ is a subgroup of order |PQ| = 15, since they are cyclic and have trivial intersection.
Same argument for the case when the Sylow 5-subgroup is unique.

3. Prove that no group of order 160 is simple.

Proof. Let G be a group of order 160 = 25 · 5, then n2 ≡ 1 mod 2 so there can be 1 or 5
Sylow 2-subgroups. If there are a unique Sylow 2-subgroup, then it is proper normal and
G cannot be simple.

Now suppose n2 = 5. Recall that G acts on the set of Sylow 2-subgroups T by conjuga-
tion. Since there are 5 such subgroups, we get a permutation homomorphism G → S5.
Now G has order 160 while S5 has order 120. The kernel of such map must be nontrivial
and we obtain a proper normal subgroup of G.

4. How many elements of order 7 are there in a simple group of order 168?

Proof. Let G be a simple group of order 168. Then n7 | 168 and n7 ≡ 1 (mod 7). Then
n7 | 24, and so n7 = 1 or 8. Since G is simple, n7 ̸= 1. Then n7 = 8. Let P1, ..., P8 be
the 8 subgroups of order 7 in G. Then |Pi∩Pj| = 1 for each i ̸= j. Each element of order
7 lies in precisely one of P1, ..., P8, and each of P1, ..., P8 contains 6 elements of order 7.
Then there are 48 = 8 · 6 elements of order 7 in G.

5. Let p, q be prime numbers. Show that a group of order p2q is solvable.

Proof. Let p, q be prime numbers. Let G be a group of order p2q.

When p = q, it follows from Sylow I that G contains a subnormal series {e} = H0 <
H1 < H2 < H3 = G, where each |Hi| = pi. Then each Hi+1/Hi is cyclic of order p.
Then G is solvable.

When p > q, np|q and np ≡ 1 (mod p). Then np = 1. Let P be the unique Sylow
p-subgroup of G. Then P ◁ G. Since |P | = p2 and |G/P | = q, both P and G/P are
abelian. Then G is solvable.

When p < q, nq|p2 and nq ≡ 1 (mod q). Then nq = 1 or nq = p2. In the former case,
there is a unique Sylow q-subgroup Q of G. Then Q ◁ G, |Q| = q and |G/Q| = p2.
Again, Q,G/Q are both abelian, so G is solvable.

In the later case, q | p2− 1, so q | p− 1 or q | p+1. But p < q, so it must be that q | p+1
and that q = p + 1. Then p = 2, q = 3, and n3 = 4. As in the last question, there are
8 elements of order 3. Any group of order 4 must consist of the remaining 4 elements in
G. Then there exists a unique Sylow 2 subgroup P of order 4. Then P and G/P are both
abelian, so G is solvable.

6. Let p < q < r be prime numbers. Show that a group of order pqr is not simple.

Proof. Let p < q < r be prime numbers. Let G be a group of order pqr that is simple.
Then np | qr, nq | pr, nr | pq; np ≡ 1 (mod p), nq ≡ 1 (mod q), nr ≡ 1 (mod r), and
np, nq, nr ̸= 1.



5

Then nr = pq. Then there are pq(r− 1) = pqr− pq many elements of order r. Note that
nq = r or pr. This gives at least (q−1)r many elements of order q. Now q−1 ≥ p, r > q,
so (q − 1)r + pq(r − 1) > pq + pq(r − 1) = pqr = |G|. This exceeds the number of
elements of G. Contradiction arises.

Therefore, a group of order pqr is not simple.


