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Compulsory Part

1. Let G be a finite group, and suppose that there exist representatives g, ..., g, of the r
distinct conjugacy classes in G such that g;g; = g;g; for all 7, j. Show that G is abelian.

Proof. Consider G acting on itself by conjugations. Fix a particular g;, then for any
r € G, we know that it is belongs to some conjugacy class, i.e. grg~' = g; for some g.
By assumption g; commutes with g; and so gzg~' € Z;(g;) the stabilizer of g;. In other
words, z € g7 Z¢(g;)g. This implies that x € Uyea 971 Zc(9:)g. So we necessarily have
G =Uyec 9 Za(gi)g.

Recall from tutorial 6 question 4b that this only happens when Z(g;) = G because for a

proper subgroup H < G there are at most [G : H| distinct subgroups of the form gHg!
and so the union contains at most [G' : H|(|H| — 1) + 1 < |G| many elements.

Therefore g; commutes with all of GG for any ¢, so the conjugacy class is just a single-
ton {g;}. Since this holds for all representative of each individual conjugacy class, this
implies that G is abelian.

2. Let GG be a finite group and let primes p and ¢ # p divide |G|. Prove that if G has
precisely one proper Sylow p-subgroup, then it must be a normal subgroup, and hence G
is not simple.

Proof. By the second Sylow theorem, any Sylow p-subgroups are conjugate to each
other. If P is the unique proper Sylow p-subgroup of G, then gPg~! is again a Sylow
p-subgroup, which must be itself. So for arbitrary ¢ € G we have gPg~* = P, hence it
is a proper normal subgroup.

3. Let G be a finite group and let p be a prime dividing |G|. Let P be a Sylow p-subgroup
of G.

(a) Show that P is the only Sylow p-subgroup of N¢(Ng(P)).
(b) Using part (a) and applying Sylow Theorems, show that No(Ng(P)) = Ng(P).

Proof.

(a) Recall that Ng(P) is the normalizer of P, i.e. consisting of all g so that gPg~' = P.
By definition P is normal in Ng(P) and so it is the unique Sylow p-subgroup of
Ng(P). Now let h € Ng(Ng(P)), then hNg(P)h™' = Ng(P). Restricting this on
P, by order consideration A Ph~! must be some Sylow p-subgroup inside Ng(P) so
hPh~! = P by uniqueness. This implies that P is also normal in Ng(Ng(P)), so
it is also the unique Sylow p-subgroup.

(b) Recall that Ng(P) = {g € G : gPg~! = P}, since any h € Ng(Ng(P)) satisfies
this condition by part (a), we have Ng(Ng(P)) = Ng(P).



4. Show that there are no simple groups of order p"m, where p is a prime, 7 is a positive
integer, and 1 < m < p.

Proof. Suppose G is a group of order p"m with 1 < m < p, consider Sylow p-subgroups
of G, by third Sylow theorem, n,, = p’k = 1 mod pfor 0 <4 < rand 1 | k | m. This
implies that 2 must be zero and £ = 1. So n,, = 1 and there is a unique Sylow p-subgroup
of GG, which is proper and normal. So G cannot be simple.

5. Let G be a group of order 6. Suppose G is not abelian.

(a) Show that GG has three subgroups of order 2.

(b) Show that there is ahomomorphism ¢ : G — S5 with | ker(¢)| < 2. [Hint: Consider
the action of GG on the set of left cosets of a subgroup of order 2 in GG (as in HW6,
Optional Q.5).]

(¢) Show that G ~ Ss.
Proof.

(a) If G is of order 6 and nonabelian, then by third Sylow theorem n3 =1 mod 3 and
n3|6 imply that n3 = 1. While n, = 1 mod 2 and n»|6 imply that 1, can be 1
or 3. If ny was also 1, then the Sylow subgroups are isomorphic to Zs and Zs, and
G = 7y X Zs3, which is abelian. This gives a contradiction. So n, = 3 and there are
three subgroups of order 2.

(b) Suppose P is one of the Sylow 2-subgroups, then G acts on the left coset space G/ P
by left multiplication. As |G/P| = 3, this group action induces a homomorphism
¢ : G — Ss. Since the action is transitive, the image of ¢ consists of (123). So
|o(G)| > 3, or ker(¢) < 2.

(c) Consider the non-identity element x of P, we would like to prove that x acting on

left P-cosets nontrivially, i.e ¢(x) # id € Ss. Assume for the sake of contradiction
that ¢(z) = 1id, then for an arbitrary y € G, y lies in some coset yP and we
have x - yP = yP since we have assumed that = acts trivially. This implies that
y~lzy € P. So we have y ' Py = P. But since y is arbitrary, this would imply
that P is a normal subgroup, contradicting the fact that P is not the unique Sylow
2-subgroup.
Now z acts nontrivially on G/P = {P, ¢: P, g2 P}, and z fixes P because z € P.
So it swaps the two other cosets. In other words, ¢(z) is a 2-cycle in S;. Since
¢(G) contains a 2-cycle and a 3-cycle, it is the whole group. And ¢ : G — S3 is an
isomorphism.

6. (a) Let GG be a finite group, and H, K < G. Show that

[H|- | K]

HEi| =210
K = AR

(Note that H K may not be a subgroup of GG, so the above is just an equality between
orders of sets.)

(b) Suppose that G is a finite group of order 48.



1. Applying Sylow Theorems, show that the number n, of Sylow 2-subgroups in
G is either 1 or 3.

ii. Suppose that no = 3 and let H, K be two distinct Syloew 2-subgroups in G.
Show that |[H N K| = 8 by applying part (a). From this and considering the
normalizer Ng(H N K), deduce that H N K is normal in G, thereby showing
that G' cannot be simple.

Proof.

(a) Suppose H x K acts on HK by (h, k) - g = hgk™". One can check that
(h1, k1) (ho, k2) - g = hahogky kit = (hihe)g(kiks) ™! = (hiho, kiks) - g

And (e,e) - g = g. Furthermore given g,¢ € HK, we can write ¢ = hk and
¢ = W'k" and hence ¢’ = (W'h™', k'~1k) - g. So this defines a transitive action. Note
that any stabilizer (h, k) of ¢ € HK satisfies (h, k) - e = hk™! = e. In other words,
(Hx K)e ={(h,k) € Hx K : h=k} = HnN K. By orbit-stabilizer theorem,

|H < K| _ [H|-|K]

HK| = = )
R = =R~ A K

(b) i. For a group G of order 48 = 2% . 3, third Sylow theorem implies that n, = 1
mod 2 and n,|48. Since ny cannot be even, this forces ny = 1 or 3.

ii. If ny = 3, for two distinct Sylow 2-subgroups H, K, we have that H N K is
also a 2-group, with order possibly given by 8,4,2 or 1. By considering part
(a), 48 > |HK| = 162/2* where k = 3,2,1 or 0. As 256/4 = 64 > 48, the
only possible value of |H N K| is 8,. Now because H N K has index 2 in H
and K, it is a normal subgroup of both H and K. By definition N(H N K)
is the largest subgroup so that H N K is normal in, so our observation implies
that H, K < Ng(H N K). Then HK C Ng(H N K). Since |HK| = 32, we
immediately have Ng(H N K) = G. And so H N K is in fact a proper normal
subgroup in G. So that G is not simple.

Optional Part

1. Let G be a finite group of odd order. Suppose that ¢ € G and ¢! lie in the same
conjugacy class. Show that g = e.

Proof. Note that if hgh™ = ¢g~!, then hg='h™ = (hgh™')™' = g. We can let (h) acts
on the set X = {g, g '}, which has cardinality 1 or 2 depending on whether g = e or not.
But (h) has odd order and the action is transitive, this forces | X | = %(h) where d is the
order of stabilizer of g, which is odd again. This implies that | X' | must be an odd number,

hence it is equal to 1 and g = e.

2. Show that every group of order 30 contains a subgroup of order 15.

Proof. Let GG be a group of order 30, then n3 = 1 mod 3 so there can be 1 or 10 Sylow
3-subgroups. Likewise n5 = 1 mod 5, so there can be 1 or 6 Sylow 5-subgroups. It is
impossible to have both ng = 10 and n5 = 6 because the Sylow p-subgroups are cyclic



and have trivial intersection. So having 10 Sylow 3-subgroups would give 10 - 2 = 20
elements of order 3, and having 6 Sylow 5-subgroups would give 4 - 6 = 24 elements of
order 5, clearly exceeding the total number of elements in G.

As a result, either the Sylow 3-subgroup or the Sylow 5-subgroup is unique, and hence is
normal. Say we have a normal Sylow 3-subgroup P, then if () is any Sylow 5-subgroup,
PQ) is a subgroup of order | PQ)| = 15, since they are cyclic and have trivial intersection.
Same argument for the case when the Sylow 5-subgroup is unique.

. Prove that no group of order 160 is simple.

Proof. Let G be a group of order 160 = 2° - 5, then n, = 1 mod 2 so there can be 1 or 5
Sylow 2-subgroups. If there are a unique Sylow 2-subgroup, then it is proper normal and
G cannot be simple.

Now suppose ny = 5. Recall that GG acts on the set of Sylow 2-subgroups 7" by conjuga-
tion. Since there are 5 such subgroups, we get a permutation homomorphism G — Ss.
Now G has order 160 while S5 has order 120. The kernel of such map must be nontrivial
and we obtain a proper normal subgroup of G.

. How many elements of order 7 are there in a simple group of order 168?

Proof. Let G be a simple group of order 168. Then n; | 168 and n; = 1 (mod 7). Then
n7 | 24, and so n; = 1 or 8. Since G is simple, n; # 1. Then n; = 8. Let Py, ..., Py be
the 8 subgroups of order 7 in G. Then | P, Pj| = 1 for each i # j. Each element of order
7 lies in precisely one of P, ..., Ps, and each of P, ..., P contains 6 elements of order 7.
Then there are 48 = 8 - 6 elements of order 7 in G.

. Let p, ¢ be prime numbers. Show that a group of order p?q is solvable.
Proof. Let p, q be prime numbers. Let G be a group of order p?q.

When p = g, it follows from Sylow I that G contains a subnormal series {e} = Hy <
H, < Hy < Hs = G, where each |H;| = p’. Then each H;,/H, is cyclic of order p.
Then G is solvable.

When p > ¢, ny|q and n, = 1 (mod p). Then n, = 1. Let P be the unique Sylow
p-subgroup of G. Then P < G. Since |P| = p* and |G/P| = ¢, both P and G/P are
abelian. Then G is solvable.

When p < ¢, ny|p* and n, = 1 (mod ¢). Then n, = 1 or n, = p?. In the former case,
there is a unique Sylow g-subgroup @ of G. Then Q < G, |Q| = ¢q and |G/Q| = p*.
Again, (), G/Q are both abelian, so G is solvable.

In the later case, ¢ | p* —1,s0q¢ | p—1lorq|p+1. Butp < ¢, soit mustbe that ¢ | p+ 1
and that ¢ = p + 1. Then p = 2, ¢ = 3, and n3 = 4. As in the last question, there are
8 elements of order 3. Any group of order 4 must consist of the remaining 4 elements in
G. Then there exists a unique Sylow 2 subgroup P of order 4. Then P and G/ P are both
abelian, so G is solvable.

. Let p < ¢ < r be prime numbers. Show that a group of order pgr is not simple.

Proof. Let p < g < r be prime numbers. Let G be a group of order pgr that is simple.
Then n, | gr, n, | pr,n, | pg; npy =1 (mod p),n, =1 (mod ¢), n, =1 (mod ), and
Np, N, Ny 7 1.



Then n,, = pq. Then there are pg(r — 1) = pgr — pqg many elements of order 7. Note that
ny = ror pr. This gives at least (¢ — 1)r many elements of order g. Now ¢—1 > p,r > ¢,
so (¢ — 1)r + pq(r — 1) > pq + pq(r — 1) = pgr = |G|. This exceeds the number of
elements of GG. Contradiction arises.

Therefore, a group of order pqr is not simple.



