THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2023-24 Homework 6 Due Date: 26th October 2023

Compulsory Part

1. Let X be a G-set. Show that G acts faithfully on X if and only if no two distinct elements of G have the same action on each element of X.

Proof. (\Rightarrow) Suppose that G acts faithfully on X, and if g_1, g_2 have the same action on every element of X, then $g_1x = g_2x$ for all $x \in X$. So that $g_2^{-1}g_1 \cdot x = g_2^{-1}g_2 \cdot x = x$ for all $x \in X$, then $g_2^{-1}g_1 = e$, in other words $g_1 = g_2$.

(\Leftarrow) Conversely, if no two elements of G have the same actions on X, this implies that the associated homomorphism $\rho : G \to S_X$ satisfies $\rho(g_1) \neq \rho(g_2)$ for $g_1 \neq g_2$, therefore $\rho(g) \neq \rho(e) = \text{id}$ for any $g \neq e$. So G acts faithfully.

2. Let X be a G-set and let $Y \subseteq X$. Show that $G_Y := \{g \in G : gy = y \text{ for all } y \in Y\}$ is a subgroup of G.

Proof. Let $g, h \in G_Y$, then gy = hy = y for all $y \in Y$, therefore $y = h^{-1}hy = h^{-1}y$ and ghy = g(hy) = gy = y. Also note that $e \in G_Y$ so it is nonempty, therefore it forms a subgroup.

- Let G be the additive group of real numbers. Let the action of θ ∈ G on the real plane ℝ² be given by rotating the plane counterclockwise about the origin through θ radians. Let P be a point other than the origin in the plane.
 - (a) Show that \mathbb{R}^2 is a *G*-set.
 - (b) Describe geometrically the orbit containing P.
 - (c) Find the group G_P .

Proof.

(a) We can describe the action by either using matrices or complex coordinates. Here we use the latter, we identify \mathbb{R}^2 and \mathbb{C} by $(x, y) \leftrightarrow x + iy$. Then rotation of z = x + iy about the origin by θ radian can be written as $\rho : G \times \mathbb{R}^2 \to \mathbb{R}^2$ by $\rho(\theta, x + iy) = e^{i\theta}(x + iy)$.

Then we can see that G acts on \mathbb{R}^2 since $(\theta_1 + \theta_2) \cdot (x + iy) = e^{i\theta_1 + i\theta_2}(x + iy) = e^{i\theta_1}e^{i\theta_2}(x + iy) = \theta_1 \cdot (\theta_2 \cdot (x + iy))$; where we have used \cdot to denote action. And for $\theta = 0$, we have $0 \cdot (x + iy) = e^0(x + iy) = x + iy$ so $0 \in \mathbb{R}$ acts by identity.

- (b) The orbit containing P is the circle centered at origin with radius |P|, since $|e^{i\theta}P| = |P|$ for any $\theta \in \mathbb{R}$.
- (c) $e^{i\theta}P = P$ if and only if $e^{i\theta} = 1$, this occus precisely when $\theta \in 2\pi\mathbb{Z}$. So $G_P = 2\pi\mathbb{Z}$.

4. Let *H* be a subgroup of *G*, and let L_H be the set of all left cosets of *H* in *G*. Show that there is a well-defined action of *G* on L_H given by g(aH) = (ga)H for $g \in G$ and $aH \in L_H$. We call L_H a **left coset** *G*-set.

Proof. We will first show that this is well-defined, i.e. we take $\rho : G \times L_H \to L_H$ by $\rho(g, aH) = (ga)H$. Then ρ does not depend on the representative of the coset. Say aH = bH, then $b^{-1}a \in H$. Rewriting $b^{-1}a = b^{-1}g^{-1}ga$, we see that (ga)H = (gb)H, therefore the function ρ is well-defined. Now consider $\rho(e, aH) = e(aH) = aH$, we see that $e \in G$ acts by identity map. And $\rho(g', \rho(g, aH)) = g'(ga)H = (g'ga)H =$ $(g'g)aH = \rho(g'g, aH)$. So it indeed defines a group action.

5. Let H < G. The **centralizer** of H is the set

$$Z_G(H) := \{g \in G : ghg^{-1} = h \text{ for all } h \in H\},\$$

and the **normalizer** of H is the set

$$N_G(H) := \{ g \in G : gHg^{-1} = H \}.$$

- (a) Show that $N_G(H)$ is the largest subgroup of G in which H is normal.
- (b) Show that $Z_G(H)$ is a normal subgroup of $N_G(H)$.
- (c) Show that the quotient group $N_G(H)/Z_G(H)$ is isomorphic to a subgroup of Aut(H).

Proof.

- (a) Let K be any subgroup of G so that K contains H and H is normal in K. Let $g \in K$, by assumption $gHg^{-1} = H$, therefore $g \in N_G(H)$. Therefore $K \leq N_G(H)$.
- (b) Let $g \in N_G(H)$, and $z \in Z_G(H)$, then for any $h \in H$, note that $gzg^{-1}h = gzg^{-1}hgg^{-1}$. But $g^{-1} \in N_G(H)$ implies that $g^{-1}hg \in H$, so that z commutes with this element. So we have $gzg^{-1}hgg^{-1} = gg^{-1}hgzg^{-1} = h(gzg^{-1})$. This shows that gzg^{-1} commutes with all $h \in H$, so that it lies in $Z_G(H)$.
- (c) We will define a homomorphism φ from N_G(H) to Aut(H) as follows. φ_g(h) = ghg⁻¹. This is well-defined by definition of noramlizer, and ker φ = {g ∈ G : ghg⁻¹ = h for all h ∈ H} = Z_G(H). Therefore by first isomorphism theorem N_G(H)/Z_G(H) ≃ im(φ) ≤ Aut(H).
- 6. Show that S_3 can never act transitively on a set with 5 elements.

Proof. Suppose S_3 acts transitively on a set X with 5 elements, then by orbit stabilizer theorem, the orbit of any element is simply X and has cardinality 5, and stabilizer of any element is a subgroup of S_3 , so it has order 1, 2, 3 or 6. Therefore we have $|G| = 6 = 5|G_x|$, this is clearly impossible.

7. Let G be a group which contains an element a whose order is at least 3. Show that $|Aut(G)| \ge 2$.

Proof. If G is nonabelian, then there exists some g, h so that $gh \neq hg$, in that case $h \mapsto ghg^{-1}$ defines a nontrivial automorphism of G, so that $|\operatorname{Aut}(G)| \geq 2$.

Otherwise suppose that G is abelian, and contains an element a of order at least 3. Then $g \mapsto g^{-1}$ is a well-defined automorphism of G since it is abelian, and it is nontrivial because $a^{-1} \neq a$.

8. Let G be a group whose order is a prime power (i.e. a p-group for some prime p). Let N be a nontrivial normal subgroup of G. Show that $N \cap Z(G) \neq \{e\}$.

Proof. Let N be any nontrivial normal subgroup of G, then G acts on N by conjugation. The fixed point sets under this action N_G consists of those elements in N so that $gng^{-1} = n$ for all $g \in G$, i.e. $N_G = N \cap Z(G)$. Then the class equation gives

$$|N| = |N_G| + \sum_{i=1}^{k} [G: G_{x_i}].$$

Here the sum is taken over representatives x_i of each orbit of size greater than 1. By assumption, the stabilizers G_{x_i} are proper subgroups of G, so the index is a positive power of p. Since both |N| and the sum on the RHS of the equation are powers of p, it follows that $|N_G| = |N \cap Z(G)| \neq 1$.

Optional Part

- 1. Let $\{X_i : i \in I\}$ be a disjoint collection of sets, meaning that $X_i \cap X_j = \emptyset$ for $i \neq j$. Suppose that each X_i is a G-set for the same group G.
 - (a) Show that $\bigcup_{i \in I} X_i$ can naturally be viewed as a *G*-set; we called it the **union** of the *G*-sets X_i .
 - (b) Show that every G-set X is the union of its orbits.

Proof.

- (a) Denote $\rho_i : G \times X_i \to X_i$ be the *G*-actions on X_i , then for $X = \bigsqcup_{i \in I} X_i$, we can define $\rho : G \times X \to X$ by $\rho(g, x) = \rho_i(g, x)$ for $x \in X_i$. This is a *G*-action because for $x \in X_i$, $\rho_i(g, x) \in X_i$ and hence $\rho(g_1, \rho(g_2, x)) = \rho_i(g_1, \rho_i(g_2, x)) = \rho_i(g_1g_2, x) = \rho(g_1g_2, x)$. And $\rho(e, x) = \rho_i(e, x) = x$.
- (b) Clearly every element x ∈ X falls into a unque orbit G ⋅ x, and different orbits are disjoint from each other. So we can pick a representative x_i in each orbit and it will give a partition of X as a set. That is, X = ∐_{i∈I} G ⋅ x_i. The restriction of the G-action on each orbit turns the orbits into G-sets since they are closed under the action of G. It is clear that the G-actions on both sides are the same.
- Let X and Y be G-sets with the same group G. An isomorphism between the G-sets X and Y is a bijection φ : X → Y which is equivariant, i.e. such that gφ(x) = φ(gx) for all x ∈ X and g ∈ G. Two G-sets are isomorphic if there exists an equivariant bijection between them.

Let X be a transitive G-set, and let $x_0 \in X$. Show that X is isomorphic to the G-set L of all left cosets of G_{x_0} . [*Hint:* For $x \in X$, suppose $x = gx_0$, and define $\phi : X \to L$ by $\phi(x) = gG_{x_0}$. Be sure to show that ϕ is well-defined!]

Proof. Fix $x_0 \in X$, define $\phi : X \to L$ by $\phi(x) = gG_{x_0}$, where $x = g \cdot x_0$. For $x = g_1x_0 = g_2x_0$, we have $g_2^{-1}g_1x_0 = x_0$, hence $g_2^{-1}g_1 \in G_{x_0}$. Therefore $\phi(x) = g_1G_{x_0} = g_2G_{x_0}$ is well-defined independent of the choice of g. This map is equivariant because $\phi(hx) = hgG_{x_0}$ for $hx = hgx_0$. This map is surjective because given any coset gG_{x_0} , we have $\phi(gx_0) = gG_{x_0}$. And it is injective because $gG_{x_0} = g'G_{x_0}$ if and only if g = g'h for some stabilizer $h \in G_{x_0}$, this is equivalent to $gx_0 = g'x_0$.

3. Let X_i for i ∈ I be G-sets for the same group G, and suppose that the sets X_i are not necessarily disjoint. Let X'_i = {(x, i) : x ∈ X_i} for each i ∈ I. Then the sets X'_i are disjoint, and each can still be regarded as a G-set in an obvious way. (The elements of X_i have simply been tagged by i to distinguish them from the elements of X_j for i ≠ j.) The G-set ⋃_{i∈I} X'_i is called the **disjoint union** of the G-sets X_i. Show that every G-set is isomorphic to a disjoint union of left coset G-sets. (Therefore, left coset G-sets are building blocks of G-sets.)

Proof. This statement follows from Q1b and Q2. By Q1b, every G-set can be decomposed into disjoint union of its orbits. Clearly G acts transitively when restricted to each orbit, therefore by Q2, it is isomorphic to a left cosets. Putting these together, any G-set is isomorphic to a disjoint union of G-sets which are isomorphic to left cosets.

4. Let G be a group. Show that G/Z(G) is isomorphic to Inn(G), the set of all inner automorphisms of G. Use this to give another proof of the fact that if G/Z(G) is cyclic, then G is abelian.

Proof. Define $G \mapsto \operatorname{Inn}(G)$ to be the obvious homomorphism $I : g \mapsto (i_g : x \mapsto gxg^{-1})$. Then by definition it is surjective, with kernel given by those $g \in G$ so that $i_g = \operatorname{id}_G$. In other words $g \in \ker(I)$ if and only if $gxg^{-1} = x$ for all $x \in G$, therefore $\ker(I) = Z(G)$. By first isomorphism theorem, it follows that $G/Z(G) \cong \operatorname{Inn}(G)$. Suppose $\operatorname{Inn}(G)$ is cyclic, say i_g is a generator, then for each $h \in G$, $hxh^{-1} = g^kxg^{-k}$ for all $x \in G$. In particular, taking x = g, we get $hgh^{-1} = g$. Since $h \in G$ is arbitrary, this implies $g \in Z(G)$. This means that $G/Z(G) \cong \operatorname{Inn}(G) \cong 1$, i.e. G = Z(G) is abelian.

- 5. Let G be a finite group, and let $H \leq G$ be a subgroup of index p, where p is the smallest prime which divides |G|.
 - (a) Write the action of G on the set G/H of left cosets by left multiplication as a homomorphism $\rho: G \to S_p$, where S_p denotes the p-th symmetric group.
 - (b) Show that ker $\rho \leq H$.
 - (c) Further show, by using the hypothesis, that $H = \ker \rho$. Hence, conclude that H is normal in G.

Proof.

- (a) G acts on the left coset space G/H by left multiplication, i.e. ρ_g : G/H → G/H is defined by ρ_g(aH) = gaH. Since [G : H] = |G/H| = p, we may regard ρ_g as a permutation of {1, ..., p} by picking any bijection between {1, ..., p} and G/H, thus ρ : g ↦ ρ_g defines a homomorphism from G to S_p.
- (b) Let $g \in \ker \rho$, then $\rho_g = \operatorname{id} : G/H \to G/H$, in particular $\rho_g(H) = gH = H$, thus $g \in H$.
- (c) Assume further that $H = \ker \rho$, then then $h \in H$ acts trivially on G/H, i.e. $\rho_h(aH) = haH = aH$ for any $aH \in G/H$. Therefore $a^{-1}ha \in H$ for any $a \in G$ and $h \in H$, i.e. H is normal.
- 6. Let G be a finite group, and let $H \leq G$ be a subgroup of index n. Prove that H contains a subgroup K which is normal in G and such that [G : K] divides the gcd of |G| and n!. [*Hint:* Use the strategy of the preceding exercise.]

Proof. As in Q5, the left multiplication action on G/H coset space defines a homomorphism $\rho: G \to S_n$. Therefore, $G/\ker \rho \cong \operatorname{im}(\rho) \leq S_n$. Take $K = \ker \rho$, then K is a normal subgroup of G, with $[G:K] = |\operatorname{im}(\rho)|$ dividing $|S_n| = n!$, so it divides the gcd of |G| and n!.

Remark: In particular, if a group G has a subgroup of index n, and |G| > n!, then G necessarily have a proper nontrivial normal subgroup, then it must not be a simple group.