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Compulsory Part

1. Let X be a G-set. Show that G acts faithfully on X if and only if no two distinct elements
of G have the same action on each element of X .

Proof. (⇒) Suppose that G acts faithfully on X , and if g1, g2 have the same action on
every element of X , then g1x = g2x for all x ∈ X . So that g−1

2 g1 · x = g−1
2 g2 · x = x for

all x ∈ X , then g−1
2 g1 = e, in other words g1 = g2.

(⇐) Conversely, if no two elements of G have the same actions on X , this implies that
the associated homomorphism ρ : G → SX satisfies ρ(g1) ̸= ρ(g2) for g1 ̸= g2, therefore
ρ(g) ̸= ρ(e) = id for any g ̸= e. So G acts faithfully.

2. Let X be a G-set and let Y ⊆ X . Show that GY := {g ∈ G : gy = y for all y ∈ Y } is a
subgroup of G.

Proof. Let g, h ∈ GY , then gy = hy = y for all y ∈ Y , therefore y = h−1hy = h−1y and
ghy = g(hy) = gy = y. Also note that e ∈ GY so it is nonempty, therefore it forms a
subgroup.

3. Let G be the additive group of real numbers. Let the action of θ ∈ G on the real plane R2

be given by rotating the plane counterclockwise about the origin through θ radians. Let
P be a point other than the origin in the plane.

(a) Show that R2 is a G-set.

(b) Describe geometrically the orbit containing P .

(c) Find the group GP .

Proof.

(a) We can describe the action by either using matrices or complex coordinates. Here
we use the latter, we identify R2 and C by (x, y) ↔ x + iy. Then rotation of
z = x + iy about the origin by θ radian can be written as ρ : G × R2 → R2 by
ρ(θ, x+ iy) = eiθ(x+ iy).
Then we can see that G acts on R2 since (θ1 + θ2) · (x + iy) = eiθ1+iθ2(x + iy) =
eiθ1eiθ2(x + iy) = θ1 · (θ2 · (x + iy)); where we have used · to denote action. And
for θ = 0, we have 0 · (x+ iy) = e0(x+ iy) = x+ iy so 0 ∈ R acts by identity.

(b) The orbit containing P is the circle centered at origin with radius |P |, since |eiθP | =
|P | for any θ ∈ R.

(c) eiθP = P if and only if eiθ = 1, this occus precisely when θ ∈ 2πZ. So GP = 2πZ.
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4. Let H be a subgroup of G, and let LH be the set of all left cosets of H in G. Show
that there is a well-defined action of G on LH given by g(aH) = (ga)H for g ∈ G and
aH ∈ LH . We call LH a left coset G-set.
Proof. We will first show that this is well-defined, i.e. we take ρ : G × LH → LH

by ρ(g, aH) = (ga)H . Then ρ does not depend on the representative of the coset. Say
aH = bH , then b−1a ∈ H . Rewriting b−1a = b−1g−1ga, we see that (ga)H = (gb)H ,
therefore the function ρ is well-defined. Now consider ρ(e, aH) = e(aH) = aH , we
see that e ∈ G acts by identity map. And ρ(g′, ρ(g, aH)) = g′(ga)H = (g′ga)H =
(g′g)aH = ρ(g′g, aH). So it indeed defines a group action.

5. Let H < G. The centralizer of H is the set

ZG(H) := {g ∈ G : ghg−1 = h for all h ∈ H},

and the normalizer of H is the set

NG(H) := {g ∈ G : gHg−1 = H}.

(a) Show that NG(H) is the largest subgroup of G in which H is normal.

(b) Show that ZG(H) is a normal subgroup of NG(H).

(c) Show that the quotient group NG(H)/ZG(H) is isomorphic to a subgroup of Aut(H).

Proof.

(a) Let K be any subgroup of G so that K contains H and H is normal in K. Let g ∈ K,
by assumption gHg−1 = H , therefore g ∈ NG(H). Therefore K ≤ NG(H).

(b) Let g ∈ NG(H), and z ∈ ZG(H), then for any h ∈ H , note that gzg−1h =
gzg−1hgg−1. But g−1 ∈ NG(H) implies that g−1hg ∈ H , so that z commutes
with this element. So we have gzg−1hgg−1 = gg−1hgzg−1 = h(gzg−1). This
shows that gzg−1 commutes with all h ∈ H , so that it lies in ZG(H).

(c) We will define a homomorphism φ from NG(H) to Aut(H) as follows. φg(h) =
ghg−1. This is well-defined by definition of noramlizer, and kerφ = {g ∈ G :
ghg−1 = h for allh ∈ H} = ZG(H). Therefore by first isomorphism theorem
NG(H)/ZG(H) ∼= im(φ) ≤ Aut(H).

6. Show that S3 can never act transitively on a set with 5 elements.

Proof. Suppose S3 acts transitively on a set X with 5 elements, then by orbit stabilizer
theorem, the orbit of any element is simply X and has cardinality 5, and stabilizer of any
element is a subgroup of S3, so it has order 1, 2, 3 or 6. Therefore we have |G| = 6 =
5|Gx|, this is clearly impossible.

7. Let G be a group which contains an element a whose order is at least 3. Show that
|Aut(G)| ≥ 2.

Proof. If G is nonabelian, then there exists some g, h so that gh ̸= hg, in that case
h 7→ ghg−1 defines a nontrivial automorphism of G, so that |Aut(G)| ≥ 2.

Otherwise suppose that G is abelian, and contains an element a of order at least 3. Then
g 7→ g−1 is a well-defined automorphism of G since it is abelian, and it is nontrivial
because a−1 ̸= a.
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8. Let G be a group whose order is a prime power (i.e. a p-group for some prime p). Let N
be a nontrivial normal subgroup of G. Show that N ∩ Z(G) ̸= {e}.

Proof. Let N be any nontrivial normal subgroup of G, then G acts on N by conjugation.
The fixed point sets under this action NG consists of those elements in N so that gng−1 =
n for all g ∈ G, i.e. NG = N ∩ Z(G). Then the class equation gives

|N | = |NG|+
k∑

i=1

[G : Gxi
].

Here the sum is taken over representatives xi of each orbit of size greater than 1. By
assumption, the stabilizers Gxi

are proper subgroups of G, so the index is a positive
power of p. Since both |N | and the sum on the RHS of the equation are powers of p, it
follows that |NG| = |N ∩ Z(G)| ≠ 1.

Optional Part

1. Let {Xi : i ∈ I} be a disjoint collection of sets, meaning that Xi ∩ Xj = ∅ for i ̸= j.
Suppose that each Xi is a G-set for the same group G.

(a) Show that
⋃

i∈I Xi can naturally be viewed as a G-set; we called it the union of the
G-sets Xi.

(b) Show that every G-set X is the union of its orbits.

Proof.

(a) Denote ρi : G × Xi → Xi be the G-actions on Xi, then for X =
⊔

i∈I Xi, we
can define ρ : G × X → X by ρ(g, x) = ρi(g, x) for x ∈ Xi. This is a G-action
because for x ∈ Xi, ρi(g, x) ∈ Xi and hence ρ(g1, ρ(g2, x)) = ρi(g1, ρi(g2, x)) =
ρi(g1g2, x) = ρ(g1g2, x). And ρ(e, x) = ρi(e, x) = x.

(b) Clearly every element x ∈ X falls into a unqiue orbit G · x, and different orbits
are disjoint from each other. So we can pick a representative xi in each orbit and it
will give a partition of X as a set. That is, X =

⊔
i∈I G · xi. The restriction of the

G-action on each orbit turns the orbits into G-sets since they are closed under the
action of G. It is clear that the G-actions on both sides are the same.

2. Let X and Y be G-sets with the same group G. An isomorphism between the G-sets X
and Y is a bijection ϕ : X → Y which is equivariant, i.e. such that gϕ(x) = ϕ(gx) for
all x ∈ X and g ∈ G. Two G-sets are isomorphic if there exists an equivariant bijection
between them.

Let X be a transitive G-set, and let x0 ∈ X . Show that X is isomorphic to the G-set L
of all left cosets of Gx0 . [Hint: For x ∈ X , suppose x = gx0, and define ϕ : X → L by
ϕ(x) = gGx0 . Be sure to show that ϕ is well-defined!]

Proof. Fix x0 ∈ X , define ϕ : X → L by ϕ(x) = gGx0 , where x = g · x0. For
x = g1x0 = g2x0, we have g−1

2 g1x0 = x0, hence g−1
2 g1 ∈ Gx0 . Therefore ϕ(x) =

g1Gx0 = g2Gx0 is well-defined independent of the choice of g. This map is equivariant
because ϕ(hx) = hgGx0 for hx = hgx0. This map is surjective because given any coset
gGx0 , we have ϕ(gx0) = gGx0 . And it is injective because gGx0 = g′Gx0 if and only if
g = g′h for some stabilizer h ∈ Gx0 , this is equivalent to gx0 = g′x0.
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3. Let Xi for i ∈ I be G-sets for the same group G, and suppose that the sets Xi are not
necessarily disjoint. Let X ′

i = {(x, i) : x ∈ Xi} for each i ∈ I . Then the sets X ′
i are

disjoint, and each can still be regarded as a G-set in an obvious way. (The elements of
Xi have simply been tagged by i to distinguish them from the elements of Xj for i ̸= j.)
The G-set

⋃
i∈I X

′
i is called the disjoint union of the G-sets Xi. Show that every G-set

is isomorphic to a disjoint union of left coset G-sets. (Therefore, left coset G-sets are
building blocks of G-sets.)

Proof. This statement follows from Q1b and Q2. By Q1b, every G-set can be decomposed
into disjoint union of its orbits. Clearly G acts transitively when restricted to each orbit,
therefore by Q2, it is isomorphic to a left cosets. Putting these together, any G-set is
isomorphic to a disjoint union of G-sets which are isomorphic to left cosets.

4. Let G be a group. Show that G/Z(G) is isomorphic to Inn(G), the set of all inner auto-
morphisms of G. Use this to give another proof of the fact that if G/Z(G) is cyclic, then
G is abelian.

Proof. Define G 7→ Inn(G) to be the obvious homomorphism I : g 7→ (ig : x 7→ gxg−1).
Then by definition it is surjective, with kernel given by those g ∈ G so that ig = idG. In
other words g ∈ ker(I) if and only if gxg−1 = x for all x ∈ G, therefore ker(I) = Z(G).
By first isomorphism theorem, it follows that G/Z(G) ∼= Inn(G). Suppose Inn(G) is
cyclic, say ig is a generator, then for each h ∈ G, hxh−1 = gkxg−k for all x ∈ G. In
particular, taking x = g, we get hgh−1 = g. Since h ∈ G is arbitrary, this implies
g ∈ Z(G). This means that G/Z(G) ∼= Inn(G) ∼= 1, i.e. G = Z(G) is abelian.

5. Let G be a finite group, and let H ≤ G be a subgroup of index p, where p is the smallest
prime which divides |G|.

(a) Write the action of G on the set G/H of left cosets by left multiplication as a ho-
momorphism ρ : G → Sp, where Sp denotes the p-th symmetric group.

(b) Show that ker ρ ≤ H .

(c) Further show, by using the hypothesis, that H = ker ρ. Hence, conclude that H is
normal in G.

Proof.

(a) G acts on the left coset space G/H by left multiplication, i.e. ρg : G/H → G/H
is defined by ρg(aH) = gaH . Since [G : H] = |G/H| = p, we may regard ρg as a
permutation of {1, ..., p} by picking any bijection between {1, ..., p} and G/H , thus
ρ : g 7→ ρg defines a homomorphism from G to Sp.

(b) Let g ∈ ker ρ, then ρg = id : G/H → G/H , in particular ρg(H) = gH = H , thus
g ∈ H .

(c) Assume further that H = ker ρ, then then h ∈ H acts trivially on G/H , i.e.
ρh(aH) = haH = aH for any aH ∈ G/H . Therefore a−1ha ∈ H for any a ∈ G
and h ∈ H , i.e. H is normal.

6. Let G be a finite group, and let H ≤ G be a subgroup of index n. Prove that H contains
a subgroup K which is normal in G and such that [G : K] divides the gcd of |G| and n!.
[Hint: Use the strategy of the preceding exercise.]
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Proof. As in Q5, the left multiplication action on G/H coset space defines a homomorphism
ρ : G → Sn. Therefore, G/ ker ρ ∼= im(ρ) ≤ Sn. Take K = ker ρ, then K is a normal subgroup
of G, with [G : K] = |im(ρ)| dividing |Sn| = n!, so it divides the gcd of |G| and n!.

Remark: In particular, if a group G has a subgroup of index n, and |G| > n!, then G necessarily
have a proper nontrivial normal subgroup, then it must not be a simple group.


