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Compulsory Part

1. Let X be a G-set. Show that GG acts faithfully on X if and only if no two distinct elements
of GG have the same action on each element of X.

Proof. (=) Suppose that GG acts faithfully on X, and if gy, go have the same action on
every element of X, then g;z = gox forall z € X. Sothat g, 'g; - = g5 'gs - * = x for
all z € X, then g, ' g, = e, in other words g; = gs.

(<) Conversely, if no two elements of GG have the same actions on X, this implies that
the associated homomorphism p : G — S satisfies p(g1) # p(go) for g1 # g2, therefore
p(g) # p(e) = id for any g # e. So G acts faithfully.

2. Let X beaG-setandletY C X. Show that Gy :={g € G : gy =y forally € Y}isa
subgroup of G.
Proof. Let g, h € Gy, then gy = hy = y for all y € Y, therefore y = h='hy = h~'y and
ghy = g(hy) = gy = y. Also note that e € Gy so it is nonempty, therefore it forms a
subgroup.

3. Let G be the additive group of real numbers. Let the action of § € G on the real plane R?
be given by rotating the plane counterclockwise about the origin through 6 radians. Let
P be a point other than the origin in the plane.

(a) Show that R? is a G-set.

(b) Describe geometrically the orbit containing P.

(c) Find the group Gp.
Proof.

(a) We can describe the action by either using matrices or complex coordinates. Here
we use the latter, we identify R? and C by (z,y) <> x + iy. Then rotation of
z = x + iy about the origin by f radian can be written as p : G x R? — R2 by
p(0, 1 +iy) = ¥ (z + iy).
Then we can see that G acts on R? since (6, + 05) - (z + iy) = 1702(z 4 iy) =
e1e2(z 4+ iy) = 0, - (03 - (x + iy)); where we have used - to denote action. And
for = 0, we have 0 - (z + iy) = €°(x + iy) = x + iy so 0 € R acts by identity.

(b) The orbit containing P is the circle centered at origin with radius | P|, since |¢? P| =
| P| for any 0 € R.

(c) € P = P if and only if ¢ = 1, this occus precisely when 6 € 27Z. So Gp = 277Z.



4. Let H be a subgroup of G, and let Ly be the set of all left cosets of H in G. Show
that there is a well-defined action of G on Ly given by g(aH) = (ga)H for g € G and
aH € L. We call Ly aleft coset (G-set.

Proof. We will first show that this is well-defined, i.e. we take p : G X Ly — Ly
by p(g,aH) = (ga)H. Then p does not depend on the representative of the coset. Say
aH = bH, then b~'a € H. Rewriting b~'a = b~'g~'ga, we see that (ga)H = (gb)H,
therefore the function p is well-defined. Now consider p(e,aH) = e(aH) = aH, we
see that e € G acts by identity map. And p(¢’, p(g,aH)) = ¢'(ga)H = (¢'ga)H =
(¢'g)aH = p(g'g,aH). So it indeed defines a group action.

5. Let H < G. The centralizer of H is the set
Za(H) :={g € G :ghg' = hforallh € H},
and the normalizer of H is the set
No(H):={g€G:gHg ' = H}.

(a) Show that N (H) is the largest subgroup of GG in which H is normal.
(b) Show that Z¢(H) is a normal subgroup of Ng(H).
(c) Show that the quotient group N (H)/Zs(H ) is isomorphic to a subgroup of Aut(H).

Proof.

(a) Let K be any subgroup of GG so that K contains H and H isnormalin K. Letg € K,
by assumption gHg~! = H, therefore g € Ng(H). Therefore K < Ng(H).

(b) Let g € Ng(H), and 2 € Zg(H), then for any h € H, note that gzg~'h =
g2g 'hgg~!. But g-! € Ng(H) implies that g~'hg € H, so that z commutes
with this element. So we have gzg 'hgg™' = gg~'hgzg™' = h(gzg™'). This
shows that gzg~! commutes with all b € H, so that it lies in Zg(H).

(c) We will define a homomorphism ¢ from N (H) to Aut(H) as follows. ¢, (h) =
ghg™!'. This is well-defined by definition of noramlizer, and kerp = {g € G :
ghg™ = hforallh € H} = Zg(H). Therefore by first isomorphism theorem

6. Show that S5 can never act transitively on a set with 5 elements.

Proof. Suppose Ss acts transitively on a set X with 5 elements, then by orbit stabilizer
theorem, the orbit of any element is simply X and has cardinality 5, and stabilizer of any
element is a subgroup of Ss, so it has order 1,2, 3 or 6. Therefore we have |G| = 6 =
5|G./, this is clearly impossible.

7. Let G be a group which contains an element a whose order is at least 3. Show that
|Aut(G)| > 2.
Proof. 1f GG is nonabelian, then there exists some ¢, h so that gh # hg, in that case
h + ghg~! defines a nontrivial automorphism of G, so that |Aut(G)| > 2.

Otherwise suppose that GG is abelian, and contains an element a of order at least 3. Then
g — ¢! is a well-defined automorphism of G since it is abelian, and it is nontrivial
because a~! # a.



8. Let GG be a group whose order is a prime power (i.e. a p-group for some prime p). Let NV
be a nontrivial normal subgroup of G. Show that N N Z(G) # {e}.
Proof. Let N be any nontrivial normal subgroup of G, then GG acts on N by conjugation.
The fixed point sets under this action N consists of those elements in N so that gng~! =

nforall g € G,i.e. No = N N Z(G). Then the class equation gives

k
IN| =|Ne|+ ) [G:G,].
=1

Here the sum is taken over representatives x; of each orbit of size greater than 1. By
assumption, the stabilizers (G,, are proper subgroups of (G, so the index is a positive
power of p. Since both |N| and the sum on the RHS of the equation are powers of p, it
follows that |[Ng| = [N N Z(G)| # 1.

Optional Part

1. Let {X; : i € I} be a disjoint collection of sets, meaning that X; N X; = ) for i # j.
Suppose that each X is a G-set for the same group G.

(a) Show that Ui6 ; X; can naturally be viewed as a G-set; we called it the union of the
G-sets X;.

(b) Show that every GG-set X is the union of its orbits.
Proof.

(a) Denote p; : G x X; — X, be the G-actions on X;, then for X = |_|i€[ X, we
can define p : G x X — X by p(g,z) = pi(g,x) for x € X;. This is a G-action
because for x € X, p;i(g,x) € X; and hence p(g1, p(92, 7)) = pi(g1, pi(g2, 7)) =
pi(9192, %) = p(g192, ). And p(e, ) = pi(e, x) = .

(b) Clearly every element x € X falls into a unqiue orbit GG - x, and different orbits
are disjoint from each other. So we can pick a representative x; in each orbit and it
will give a partition of X as a set. Thatis, X = | |,.; G - x;. The restriction of the
G-action on each orbit turns the orbits into (G-sets since they are closed under the
action of G. It is clear that the G-actions on both sides are the same.

2. Let X and Y be G-sets with the same group GG. An isomorphism between the G-sets X
and Y is a bijection ¢ : X — Y which is equivariant, i.e. such that g¢(x) = ¢(gx) for
all x € X and g € GG. Two G-sets are isomorphic if there exists an equivariant bijection
between them.

Let X be a transitive G-set, and let z; € X. Show that X is isomorphic to the G-set L
of all left cosets of G;,. [Hint: For x € X, suppose x = gz, and define ¢ : X — L by
¢(z) = gG,,. Be sure to show that ¢ is well-defined!]

Proof. Fix zyp € X, define ¢ : X — L by ¢(z) = ¢gG,,, where z = g - x9. For
T = giTy = ¢aTo, We have g, 179 = x0, hence g, 'g1 € G,,. Therefore ¢(z) =
91G2, = g2G,, 1s well-defined independent of the choice of g. This map is equivariant
because ¢(hx) = hgG,, for hx = hgx,. This map is surjective because given any coset
9G .y, we have ¢(gxg) = gG,,. And it is injective because ¢G,, = ¢'G,, if and only if
g = ¢'h for some stabilizer h € G, this is equivalent to gz = ¢'xy.



3. Let X, for v € I be G-sets for the same group G, and suppose that the sets X; are not
necessarily disjoint. Let X! = {(z,4) : x € X,} for each i € I. Then the sets X are
disjoint, and each can still be regarded as a G-set in an obvious way. (The elements of
X; have simply been tagged by i to distinguish them from the elements of X for i # j.)
The G-set | J,.; X/ is called the disjoint union of the G-sets X;. Show that every G-set
is isomorphic to a disjoint union of left coset G-sets. (Therefore, left coset G-sets are
building blocks of G-sets.)

Proof. This statement follows from Q1b and Q2. By Q1b, every G-set can be decomposed
into disjoint union of its orbits. Clearly G acts transitively when restricted to each orbit,
therefore by Q2, it is isomorphic to a left cosets. Putting these together, any G-set is
isomorphic to a disjoint union of GG-sets which are isomorphic to left cosets.

4. Let G be a group. Show that G/Z(G) is isomorphic to Inn(G), the set of all inner auto-
morphisms of GG. Use this to give another proof of the fact that if G/Z(G) is cyclic, then
G is abelian.

Proof. Define G — Inn(G) to be the obvious homomorphism [ : g — (i, : x — gzg™).
Then by definition it is surjective, with kernel given by those g € G so that iy = idg. In
other words ¢ € ker(7) if and only if gzg~! = x for all x € G, therefore ker(I) = Z(G).
By first isomorphism theorem, it follows that G/Z(G) = Inn(G). Suppose Inn(G) is
cyclic, say i, is a generator, then for each h € G, hah™" = gkzg~* forall z € G. In
particular, taking x = g, we get hgh™' = ¢. Since h € @ is arbitrary, this implies
g € Z(G). This means that G/Z(G) = Inn(G) = 1, i.e. G = Z(G) is abelian.

5. Let G be a finite group, and let H < G be a subgroup of index p, where p is the smallest
prime which divides |G]|.

(a) Write the action of GG on the set G/H of left cosets by left multiplication as a ho-
momorphism p : G — S, where S, denotes the p-th symmetric group.

(b) Show that ker p < H.

(c) Further show, by using the hypothesis, that H = ker p. Hence, conclude that H is
normal in G.

Proof.

(a) G acts on the left coset space GG/ H by left multiplication, i.e. p, : G/H — G/H
is defined by p,(aH) = gaH. Since |G : H| = |G/H| = p, we may regard p, as a
permutation of {1, ..., p} by picking any bijection between {1, ..., p} and G/ H, thus
p 1 g+ pg defines a homomorphism from G to S,.

(b) Let g € kerp, then p, =id : G/H — G/H, in particular p,(H) = gH = H, thus
ge< H.
(c) Assume further that H = kerp, then then h € H acts trivially on G/H, i.e.

pn(aH) = haH = aH for any aH € G/H. Therefore a 'ha € H for any a € G
and h € H,i.e. H is normal.

6. Let G be a finite group, and let < G be a subgroup of index n. Prove that / contains
a subgroup K which is normal in G and such that [G : K] divides the gcd of |G| and n!.
[Hint: Use the strategy of the preceding exercise.]



Proof. As in QS5, the left multiplication action on GG/ H coset space defines a homomorphism
p: G — S,. Therefore, G/ ker p = im(p) < S,,. Take K = ker p, then K is a normal subgroup
of G, with [G : K] = |[im(p)| dividing |S,,| = n!, so it divides the gcd of |G| and n!.

Remark: In particular, if a group G has a subgroup of index n, and |G| > n!, then G necessarily
have a proper nontrivial normal subgroup, then it must not be a simple group.



