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Compulsory Part
1. Prove that if p is an irreducible in a UFD, then p is a prime.

Proof. Let p be an irreducible in a UFD R. Let a,b € R. Suppose p | ab. Write a =
mi...m, and b = mj...w,, where m;, 7; are all irreducibles in R. Since p | ab, p is an
associate of some 7; or 7r;-. Thenp | a or p | b. That is, p is a prime. [

2. Let D be a UFD. Show that a non-constant divisor of a primitive polynomial in D|x] is
again a primitive polynomial.

Proof. Recall that a polynomial is primitive if and only if 1 is a content of it. Suppose f
is a primitive polynomial, and f = g-h where g is non-constant divisor. Then any content
of f is a divisor of any content of g. But 1 is a content of f, so any content of g is a unit,
i.e. 1 is a content of g. [

3. Let R be any ring. The ascending chain condition (ACC) for ideals holds in R if every
strictly increasing sequence N; C Ny, C N3 C --- of ideals in R is of finite length.
The maximum condition (MC) for ideals holds in R if every non-empty set .S of ideals
in R contains an ideal not properly contained in any other ideal of the set S. The finite
basis condition (FBC) for ideals holds in R if for each ideal NV in R, there is a finite set
By = {by,--- ,b,} C N such that N is the intersection of all ideals of R containing By.
The By is a finite generating set for N.

Show that for every ring R, the conditions ACC, MC, and FBC are equivalent.

Proof. (ACC = MC) Let R be a ring satisfying ACC but not MC. Then there is a
nonempty set .S of ideals of R without maximal element. Then for each ideal N € S,
there is an N’ € S such that N C N’

Let N; be an ideal in R. We can inductively define an ideal N;,; of R with N;;; 2 N;.
This violates ACC. Therefore, ACC implies MC.

(MC = FBC) Let R be a ring satisfying MC. Let NV be an ideal in R. Let S be the set
of finitely generated ideals of R contained in N. Then S contains a maximal element /Ny
by MC. Then N; C N and NV, is finitely generated. For any a € N, aR + N; C N is
again finitely generated, and N; C aR 4+ N;. By the maximality of Ny, N; = aR + Nj.
Then a € Ny. Then N = NV, is finitely generated.

(FBC = ACC) Let N; € N, C --- be an infinite chain of ideals of R.

Let N = Ui21 N;. Then N is an ideal of R. By FBC, there are by, by, ...,b, € N such
that N = (by, b, ..., b,). For each i, b; belongs to some N,.,. Take r to be the maximum
of the r;’s. Then, b; belongs to /N, for all ¢.

It follows that N, C N, 1 € N = (b, bs,...,b,) C N,. Contradiction arises. Therefore,
ACC holds. U]



4. Prove or disprove the following statement: If v is a Euclidean norm on Euclidean domain
D, then {a € D|v(a) > v(1)} U{0} is an ideal of D.

Answer. The statement is false, here is a counter-example.

Let F be a field of characteristic # 2. Let D = F[z|, and v(f) = deg(f) is a Euclidean
norm on D. Now both 1 + = and 1 — = have norm 1 which is greater than 0 = v/(1).

However, (1 + z) 4+ (1 —x) = 2 has norm 0 % v(1).
O

5. Show that every field is a Euclidean domain.

Proof. Let F be a field. Define v(x) = 1 for all x € F*. That v(a) < v(ab) for a,b # 0
is clear. Now for a,b € F with b # 0, we have a = (ab™1)b + 0. Simply take r = 0. It
follows that v is a Euclidean norm on F'. [l

6. Let (o) be a non-zero principal ideal in Z[i].

(a) Show that Z[i]/(«) is a finite ring.
(b) Show that if 7 is an irreducible of Z[i], then Z[i] /(r) is a field.
(c) Referring to part b, find the order and characteristic of each of the following fields.
i. Z[i]/(3)
ii. Z[i])/(1+1)
iii. Z[:] /(1 + 2d)
Proof. (a) Recall that Z[i] is a Euclidean domain with a norm defined by N (a + ib) =
a® + b2
Note that N(«) € Z[i]. Then for any a,b € Z, there exists some 0 < ¢,d <

N(a)—1suchthata = ¢ (mod N(a))andb = d (mod N(«)). Then a+bi+ ()
¢+ di + (). Since (c, d) has [N (a)|? choices, |Z[i]/{a)| < |N(a)|?.

(b) Let 7 be an irreducible of Z[i]. Then (r) is maximal among principle ideals other
than Z[1].
Since Z[i] is a Euclidean domain, it is a PID. Then (7) is maximal among all ideals
other than Z[i|. That is, (7) is a maximal ideal in Z[i|. Then Z[i|/(7) is a field.

(c) i Z[i]/(3) ~ Z[x]/(x* + 1,3) ~ F3[x]/(x* + 1). The order is 9 and the charac-
teristic is 3.
ii. Z[i]/(1+1d) ~ Z[z]/(x + 1,22 + 1) ~ Z[z]/(x +1,2) ~ Fy[z]/(x + 1) ~ Fs.
The order is 2 and the characteristic is 2.
iii. Z[i]/(1+2i) ~ Z[z]/(1+ 2z, %+ 1) = Z[z]/(5,2+3) =~ Fs[z]/(x+3) ~ Fs.
The order is 5 and the characteristic is 5.

O

7. Let n € Z™ be square free, that is , not divisible by the square of any prime integer. Let

Z[v=n] = {a + ib\/n|a,b € Z}.

(a) Show that the norm N, defined by N(a) = a? + nb® for a = a + iby/n, is a
multiplicative norm on Z[/—n].



(b)
(c)

Show that N («) = 1 for a € Z[/—n] if and only if « is a unit of Z[/—n].

Show that every non-zero o € Z[/—n] that is not a unit has a factorization into
irreducibles in Z[/—n].

Proof. (a) Note that N(a) = aa. Then for a, 8 € Z[\/—n], N(aB) = aBaf =

(b)

(c)

aa@ff = N(a)N(B). It follows that N is multiplicative.

Suppose « is a unit in Z[y/—n]. Then afB = 1 for some b € Z[\/—n|. Then
N(a)N(B) = N(ap) = N(1) = 1. Since the range of N is a subset of Zx,
N(a)=1.

Conversely, suppose o € Z[y/—n| has norm N(a) = 1, then aa = 1, and @ €
Z[+/—n)]. Therefore, « is a unit of Z[y/—n].

Suppose the statement is incorrect. Let o € Z[/—n| be a nonunit without such
factorization such that any 8 € Z[v/—n] — {0} with N(8) < N(«) is either a unit
or has a factorization into irreducibles in Z[y/—n)].

Then by (b), N(a) > 2. Since « does not have factorization into irreducibles, « is
not an irreducible itself. Then a@ = (7 for some nonunits 3,7 € Z[\/—n|. Then
N(a) = N(B)N(v),and N(B), N(v) > 2. Then N(8), N(v) < N(«), and so have
factorization into irreducibles. Then « also has a factorization into irreducibles.
Contradiction arises.

Therefore, every non-zero o € Z[/—n] that is not a unit has a factorization into
irreducibles in Z[v/—n).

O



Optional Part

1. Let R be any ring. The descending chain condition (DCC) for ideals holds in R if every
strictly decreasing sequence N; D Ny D N3 D --- of ideals in R is of finite length. The
minimum condition (mC) for ideals holds in R if given any set S of ideals of R, there
is an ideal of .S that does not properly contain any other ideal in the set S.

Show that for every ring, the conditions DCC and mC are equivalent.

Proof. (DCC = mC) Let S be a non-empty set of ideals of R. Suppose mC is false.
Then for each N € S, there is an N’ € S such that N/ C N. Fix a member N; of S
(possible since S # (). Then we define inductively an infinite sequence of ideals V; such
that V; € S and N;; € N; for all 7. This contradicts the assumption of DCC.

(mC = DCC) Let N; 2 Ny 2 N3 D --- be an infinite strictly decreasing sequence of
ideals of R. Let S = {/V;|i1} be a non-empty set of ideals of R. Then mC implies that
there is a member N, of S which does not contain any other member of S. But this is
impossible since N, 2 N, 1. ]

=

2. Give an example of a ring in which ACC holds but DCC does not hold.

Answer. An example is given by Z. That it satisfies ACC basically follows from the fact
the every non-zero integer has a finite number of divisors. On the other hand, Z does not
satisfies DCC because 2Z 2 4Z 282 2 --- D 2"Z 2D - -.

3. Let v be a Euclidean norm on a Euclidean domain D.

a. Show that if s € Z such that s + v(1) > 0, then p : D* — 7Z defined by n(a) =
v(a) + s for non-zero a € D is a Euclidean norm on D. As usual, D* is the set of
non-zero elements of D.

b. Show that for ¢t € Z*, A : D* — Z given by \(a) = t - v(a) for non-zero a € D is a
Euclidean norm on D.

c. Show that there exists a Euclidean norm g on D such that ;(1) = 1 and p(a) > 100
for all non-zero non-units a € D.

Proof. a,b. Note first that if (1) = v(1) + s > 0, then for any a € D*, n(a) =
v(ia-1)+s > v(l) +s > 0. The rest of the proof follows from the inequalities
v(a) < v(ab) and v(r) < v(b) (from the division) about the norm v because they
imply immediately that n(a) = v(a) +s < v(ab) + s = n(ab) (resp. A(a) =
t-v(a) < t-viab) = Aab)) and n(r) = v(r) + s < v(b) + s = n(b) (resp.
Ar) =t-v(r) <t-v(b) = Ab)).

¢. Take p(a) = 100(v(a) — v(1)) + 1 for a € D*. (Note that a € D* is a unit if and

only if v(a) = v(1).) That u is a Euclidean norm follows immediately from (a) and
(b).

0

4. Let D be a UFD. Show that all common multiples, in the obvious sense, of both a and b
form an ideal of D.



Proof. Denote the set of all common multiples of a, b by D(a, b),

2,y € D(a,b) = x+y € D(a,b):

Let z,y € D(a,b). Then a|z, b|x, aly, bly. It follows that a|(z + y), b|(x + y).
e re€R,x€ D(a,b)=rx € D(a,b):

Let x € D(a,b). Then a|rz, b|rz.

]

5. Let D be a UFD. An element c in D is a least common multiple (abbreviated lcm) of
two elements a and b in D if a|c, b|c and if ¢ divides every element of D that is divisible
by both a and b. Show that every two non-zero elements a and b of a Euclidean domain
D have an Icm in D.

Proof. Let D be a Euclidean domain and let a, b be two non-zero elements of D.

Then D is a PID. Hence the ideal (a) N (b) is principal. Let ¢ be a generator of this ideal.
Then ¢ € (a) and ¢ € (b), implying that a|c and b|c. Suppose ¢ € D satisfies a|c’ and
b|c’. Then ¢ belongs to (a) and (b), and hence to (a) N (b) = (c). It follows that c|c’. [



