THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 10
 Due Date: 4th December 2023

Compulsory Part

1. Prove that if p is an irreducible in a UFD, then p is a prime.

Proof. Let p be an irreducible in a UFD R. Let $a, b \in R$. Suppose $p \mid a b$. Write $a=$ $\pi_{1} \ldots \pi_{r}$ and $b=\pi_{1}^{\prime} \ldots \pi_{s}^{\prime}$, where $\pi_{i}, \pi_{j}^{\prime}$ are all irreducibles in R. Since $p \mid a b, p$ is an associate of some π_{i} or π_{j}^{\prime}. Then $p \mid a$ or $p \mid b$. That is, p is a prime.
2. Let D be a UFD. Show that a non-constant divisor of a primitive polynomial in $D[x]$ is again a primitive polynomial.

Proof. Recall that a polynomial is primitive if and only if 1 is a content of it. Suppose f is a primitive polynomial, and $f=g \cdot h$ where g is non-constant divisor. Then any content of f is a divisor of any content of g. But 1 is a content of f, so any content of g is a unit, i.e. 1 is a content of g.
3. Let R be any ring. The ascending chain condition (ACC) for ideals holds in R if every strictly increasing sequence $N_{1} \subset N_{2} \subset N_{3} \subset \cdots$ of ideals in R is of finite length. The maximum condition (MC) for ideals holds in R if every non-empty set S of ideals in R contains an ideal not properly contained in any other ideal of the set S. The finite basis condition (FBC) for ideals holds in R if for each ideal N in R, there is a finite set $B_{N}=\left\{b_{1}, \cdots, b_{n}\right\} \subseteq N$ such that N is the intersection of all ideals of R containing B_{N}. The B_{N} is a finite generating set for N.
Show that for every ring R, the conditions ACC, MC, and FBC are equivalent.
Proof. (ACC $\Longrightarrow \mathrm{MC}$) Let R be a ring satisfying ACC but not MC. Then there is a nonempty set S of ideals of R without maximal element. Then for each ideal $N \in S$, there is an $N^{\prime} \in S$ such that $N \subsetneq N^{\prime}$.
Let N_{1} be an ideal in R. We can inductively define an ideal N_{i+1} of R with $N_{i+1} \supsetneq N_{i}$. This violates ACC. Therefore, ACC implies MC.
$(\mathrm{MC} \Longrightarrow \mathrm{FBC})$ Let R be a ring satisfying MC. Let N be an ideal in R. Let S be the set of finitely generated ideals of R contained in N. Then S contains a maximal element N_{1} by MC. Then $N_{1} \subseteq N$ and N_{1} is finitely generated. For any $a \in N, a R+N_{1} \subseteq N$ is again finitely generated, and $N_{1} \subseteq a R+N_{1}$. By the maximality of $N_{1}, N_{1}=a R+N_{1}$. Then $a \in N_{1}$. Then $N=N_{1}$ is finitely generated.
($\mathrm{FBC} \Longrightarrow \mathrm{ACC}$) Let $N_{1} \subsetneq N_{2} \subsetneq \cdots$ be an infinite chain of ideals of R.
Let $N=\bigcup_{i \geq 1} N_{i}$. Then N is an ideal of R. By FBC, there are $b_{1}, b_{2}, \ldots, b_{n} \in N$ such that $N=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$. For each i, b_{i} belongs to some $N_{r_{i}}$. Take r to be the maximum of the r_{i} 's. Then, b_{i} belongs to N_{r} for all i.
It follows that $N_{r} \subsetneq N_{r+1} \subseteq N=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle \subseteq N_{r}$. Contradiction arises. Therefore, ACC holds.
4. Prove or disprove the following statement: If ν is a Euclidean norm on Euclidean domain D, then $\{a \in D \mid \nu(a)>\nu(1)\} \cup\{0\}$ is an ideal of D.

Answer. The statement is false, here is a counter-example.
Let F be a field of characteristic $\neq 2$. Let $D=F[x]$, and $\nu(f)=\operatorname{deg}(f)$ is a Euclidean norm on D. Now both $1+x$ and $1-x$ have norm 1 which is greater than $0=\nu(1)$. However, $(1+x)+(1-x)=2$ has norm $0 \ngtr \nu(1)$.
5. Show that every field is a Euclidean domain.

Proof. Let F be a field. Define $\nu(x)=1$ for all $x \in F^{\times}$. That $\nu(a) \leq \nu(a b)$ for $a, b \neq 0$ is clear. Now for $a, b \in F$ with $b \neq 0$, we have $a=\left(a b^{-1}\right) b+0$. Simply take $r=0$. It follows that ν is a Euclidean norm on F.
6. Let $\langle\alpha\rangle$ be a non-zero principal ideal in $\mathbb{Z}[i]$.
(a) Show that $\mathbb{Z}[i] /\langle\alpha\rangle$ is a finite ring.
(b) Show that if π is an irreducible of $\mathbb{Z}[i]$, then $\mathbb{Z}[i] /\langle\pi\rangle$ is a field.
(c) Referring to part b , find the order and characteristic of each of the following fields.

> i. $\mathbb{Z}[i] /\langle 3\rangle$
> ii. $\mathbb{Z}[i] /\langle 1+i\rangle$
> iii. $\mathbb{Z}[i] /\langle 1+2 i\rangle$

Proof. (a) Recall that $\mathbb{Z}[i]$ is a Euclidean domain with a norm defined by $N(a+i b)=$ $a^{2}+b^{2}$.
Note that $N(\alpha) \in \mathbb{Z}[i]$. Then for any $a, b \in \mathbb{Z}$, there exists some $0 \leq c, d \leq$ $N(\alpha)-1$ such that $a \equiv c(\bmod N(\alpha))$ and $b \equiv d(\bmod N(\alpha))$. Then $a+b i+\langle\alpha\rangle=$ $c+d i+\langle\alpha\rangle$. Since (c, d) has $|N(\alpha)|^{2}$ choices, $|\mathbb{Z}[i] /\langle\alpha\rangle| \leq|N(\alpha)|^{2}$.
(b) Let π be an irreducible of $\mathbb{Z}[i]$. Then $\langle\pi\rangle$ is maximal among principle ideals other than $\mathbb{Z}[i]$.
Since $\mathbb{Z}[i]$ is a Euclidean domain, it is a PID. Then $\langle\pi\rangle$ is maximal among all ideals other than $\mathbb{Z}[i]$. That is, $\langle\pi\rangle$ is a maximal ideal in $\mathbb{Z}[i]$. Then $\mathbb{Z}[i] /(\pi)$ is a field.
(c) i. $\mathbb{Z}[i] /\langle 3\rangle \simeq \mathbb{Z}[x] /\left(x^{2}+1,3\right) \simeq \mathbb{F}_{3}[x] /\left(x^{2}+1\right)$. The order is 9 and the characteristic is 3 .
ii. $\mathbb{Z}[i] /\langle 1+i\rangle \simeq \mathbb{Z}[x] /\left(x+1, x^{2}+1\right) \simeq \mathbb{Z}[x] /(x+1,2) \simeq \mathbb{F}_{2}[x] /(x+1) \simeq \mathbb{F}_{2}$. The order is 2 and the characteristic is 2 .
iii. $\mathbb{Z}[i] /\langle 1+2 i\rangle \simeq \mathbb{Z}[x] /\left(1+2 x, x^{2}+1\right)=\mathbb{Z}[x] /(5, x+3) \simeq \mathbb{F}_{5}[x] /(x+3) \simeq \mathbb{F}_{5}$. The order is 5 and the characteristic is 5 .
7. Let $n \in \mathbb{Z}^{+}$be square free, that is, not divisible by the square of any prime integer. Let $\mathbb{Z}[\sqrt{-n}]=\{a+i b \sqrt{n} \mid a, b \in \mathbb{Z}\}$.
(a) Show that the norm N, defined by $N(\alpha)=a^{2}+n b^{2}$ for $\alpha=a+i b \sqrt{n}$, is a multiplicative norm on $\mathbb{Z}[\sqrt{-n}]$.
(b) Show that $N(\alpha)=1$ for $\alpha \in \mathbb{Z}[\sqrt{-n}]$ if and only if α is a unit of $\mathbb{Z}[\sqrt{-n}]$.
(c) Show that every non-zero $\alpha \in \mathbb{Z}[\sqrt{-n}]$ that is not a unit has a factorization into irreducibles in $\mathbb{Z}[\sqrt{-n}]$.

Proof. (a) Note that $N(\alpha)=\alpha \bar{\alpha}$. Then for $\alpha, \beta \in \mathbb{Z}[\sqrt{-n}], N(\alpha \beta)=\alpha \beta \overline{\alpha \beta}=$ $\alpha \bar{\alpha} \beta \bar{\beta}=N(\alpha) N(\beta)$. It follows that N is multiplicative.
(b) Suppose α is a unit in $\mathbb{Z}[\sqrt{-n}]$. Then $\alpha \beta=1$ for some $b \in \mathbb{Z}[\sqrt{-n}]$. Then $N(\alpha) N(\beta)=N(\alpha \beta)=N(1)=1$. Since the range of N is a subset of $\mathbb{Z}_{\geq 0}$, $N(\alpha)=1$.
Conversely, suppose $\alpha \in \mathbb{Z}[\sqrt{-n}]$ has norm $N(\alpha)=1$, then $\alpha \bar{\alpha}=1$, and $\bar{\alpha} \in$ $\mathbb{Z}[\sqrt{-n}]$. Therefore, α is a unit of $\mathbb{Z}[\sqrt{-n}]$.
(c) Suppose the statement is incorrect. Let $\alpha \in \mathbb{Z}[\sqrt{-n}]$ be a nonunit without such factorization such that any $\beta \in \mathbb{Z}[\sqrt{-n}]-\{0\}$ with $N(\beta)<N(\alpha)$ is either a unit or has a factorization into irreducibles in $\mathbb{Z}[\sqrt{-n}]$.
Then by (b), $N(\alpha) \geq 2$. Since α does not have factorization into irreducibles, α is not an irreducible itself. Then $\alpha=\beta \gamma$ for some nonunits $\beta, \gamma \in \mathbb{Z}[\sqrt{-n}]$. Then $N(\alpha)=N(\beta) N(\gamma)$, and $N(\beta), N(\gamma) \geq 2$. Then $N(\beta), N(\gamma) \leq N(\alpha)$, and so have factorization into irreducibles. Then α also has a factorization into irreducibles. Contradiction arises.
Therefore, every non-zero $\alpha \in \mathbb{Z}[\sqrt{-n}]$ that is not a unit has a factorization into irreducibles in $\mathbb{Z}[\sqrt{-n}]$.

Optional Part

1. Let R be any ring. The descending chain condition (DCC) for ideals holds in R if every strictly decreasing sequence $N_{1} \supset N_{2} \supset N_{3} \supset \cdots$ of ideals in R is of finite length. The minimum condition ($\mathbf{m C}$) for ideals holds in R if given any set S of ideals of R, there is an ideal of S that does not properly contain any other ideal in the set S. Show that for every ring, the conditions DCC and mC are equivalent.

Proof. (DCC $\Longrightarrow \mathrm{mC}$) Let S be a non-empty set of ideals of R. Suppose mC is false. Then for each $N \in S$, there is an $N^{\prime} \in S$ such that $N^{\prime} \subsetneq N$. Fix a member N_{1} of S (possible since $S \neq \emptyset$). Then we define inductively an infinite sequence of ideals N_{i} such that $N_{i} \in S$ and $N_{i+1} \subsetneq N_{i}$ for all i. This contradicts the assumption of DCC.
($\mathrm{mC} \Longrightarrow$ DCC) Let $N_{1} \supsetneq N_{2} \supsetneq N_{3} \supsetneq \cdots$ be an infinite strictly decreasing sequence of ideals of R. Let $S=\left\{N_{i} \mid i 1\right\}$ be a non-empty set of ideals of R. Then mC implies that there is a member N_{r} of S which does not contain any other member of S. But this is impossible since $N_{r} \supsetneq N_{r+1}$.
2. Give an example of a ring in which ACC holds but DCC does not hold.

Answer. An example is given by \mathbb{Z}. That it satisfies ACC basically follows from the fact the every non-zero integer has a finite number of divisors. On the other hand, \mathbb{Z} does not satisfies DCC because $2 \mathbb{Z} \supsetneq 4 \mathbb{Z} \supsetneq 8 \mathbb{Z} \supsetneq \cdots \supsetneq 2^{n} \mathbb{Z} \supsetneq \cdots$.
3. Let ν be a Euclidean norm on a Euclidean domain D.
a. Show that if $s \in \mathbb{Z}$ such that $s+\nu(1)>0$, then $\eta: D^{*} \rightarrow \mathbb{Z}$ defined by $\eta(a)=$ $\nu(a)+s$ for non-zero $a \in D$ is a Euclidean norm on D. As usual, D^{*} is the set of non-zero elements of D.
b. Show that for $t \in \mathbb{Z}^{+}, \lambda: D^{*} \rightarrow \mathbb{Z}$ given by $\lambda(a)=t \cdot \nu(a)$ for non-zero $a \in D$ is a Euclidean norm on D.
c. Show that there exists a Euclidean norm μ on D such that $\mu(1)=1$ and $\mu(a)>100$ for all non-zero non-units $a \in D$.

Proof. a,b. Note first that if $\eta(1)=\nu(1)+s>0$, then for any $a \in D^{*}, \eta(a)=$ $\nu(a \cdot 1)+s \geq \nu(1)+s>0$. The rest of the proof follows from the inequalities $\nu(a) \leq \nu(a b)$ and $\nu(r)<\nu(b)$ (from the division) about the norm ν because they imply immediately that $\eta(a)=\nu(a)+s \leq \nu(a b)+s=\eta(a b)$ (resp. $\lambda(a)=$ $t \cdot \nu(a) \leq t \cdot \nu(a b)=\lambda(a b))$ and $\eta(r)=\nu(r)+s<\nu(b)+s=\eta(b)$ (resp. $\lambda(r)=t \cdot \nu(r)<t \cdot \nu(b)=\lambda(b))$.
c. Take $\mu(a)=100(\nu(a)-\nu(1))+1$ for $a \in D^{*}$. (Note that $a \in D^{*}$ is a unit if and only if $\nu(a)=\nu(1)$.) That μ is a Euclidean norm follows immediately from (a) and (b).
4. Let D be a UFD. Show that all common multiples, in the obvious sense, of both a and b form an ideal of D.

Proof. Denote the set of all common multiples of a, b by $D(a, b)$,

- $x, y \in D(a, b) \Rightarrow x+y \in D(a, b):$

Let $x, y \in D(a, b)$. Then $a|x, b| x, a|y, b| y$. It follows that $a|(x+y), b|(x+y)$.

- $r \in R, x \in D(a, b) \Rightarrow r x \in D(a, b)$:

Let $x \in D(a, b)$. Then $a|r x, b| r x$.
5. Let D be a UFD. An element c in D is a least common multiple (abbreviated lcm) of two elements a and b in D if $a|c, b| c$ and if c divides every element of D that is divisible by both a and b. Show that every two non-zero elements a and b of a Euclidean domain D have an lcm in D.

Proof. Let D be a Euclidean domain and let a, b be two non-zero elements of D.
Then D is a PID. Hence the ideal $\langle a\rangle \cap\langle b\rangle$ is principal. Let c be a generator of this ideal. Then $c \in\langle a\rangle$ and $c \in\langle b\rangle$, implying that $a \mid c$ and $b \mid c$. Suppose $c^{\prime} \in D$ satisfies $a \mid c^{\prime}$ and $b \mid c^{\prime}$. Then c^{\prime} belongs to $\langle a\rangle$ and $\langle b\rangle$, and hence to $\langle a\rangle \cap\langle b\rangle=\langle c\rangle$. It follows that $c \mid c^{\prime}$.

