THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2023-24 Homework 10 Due Date: 4th December 2023

Compulsory Part

1. Prove that if p is an irreducible in a UFD, then p is a prime.

Proof. Let p be an irreducible in a UFD R. Let $a, b \in R$. Suppose $p \mid ab$. Write $a = \pi_1 \dots \pi_r$ and $b = \pi'_1 \dots \pi'_s$, where π_i, π'_j are all irreducibles in R. Since $p \mid ab$, p is an associate of some π_i or π'_j . Then $p \mid a$ or $p \mid b$. That is, p is a prime.

2. Let D be a UFD. Show that a non-constant divisor of a primitive polynomial in D[x] is again a primitive polynomial.

Proof. Recall that a polynomial is primitive if and only if 1 is a content of it. Suppose f is a primitive polynomial, and $f = g \cdot h$ where g is non-constant divisor. Then any content of f is a divisor of any content of g. But 1 is a content of f, so any content of g is a unit, i.e. 1 is a content of g.

3. Let R be any ring. The ascending chain condition (ACC) for ideals holds in R if every strictly increasing sequence $N_1 \,\subset N_2 \,\subset N_3 \,\subset \cdots$ of ideals in R is of finite length. The maximum condition (MC) for ideals holds in R if every non-empty set S of ideals in R contains an ideal not properly contained in any other ideal of the set S. The finite basis condition (FBC) for ideals holds in R if for each ideal N in R, there is a finite set $B_N = \{b_1, \cdots, b_n\} \subseteq N$ such that N is the intersection of all ideals of R containing B_N . The B_N is a finite generating set for N.

Show that for every ring R, the conditions ACC, MC, and FBC are equivalent.

Proof. (ACC \implies MC) Let R be a ring satisfying ACC but not MC. Then there is a nonempty set S of ideals of R without maximal element. Then for each ideal $N \in S$, there is an $N' \in S$ such that $N \subsetneq N'$.

Let N_1 be an ideal in R. We can inductively define an ideal N_{i+1} of R with $N_{i+1} \supseteq N_i$. This violates ACC. Therefore, ACC implies MC.

(MC \implies FBC) Let R be a ring satisfying MC. Let N be an ideal in R. Let S be the set of finitely generated ideals of R contained in N. Then S contains a maximal element N_1 by MC. Then $N_1 \subseteq N$ and N_1 is finitely generated. For any $a \in N$, $aR + N_1 \subseteq N$ is again finitely generated, and $N_1 \subseteq aR + N_1$. By the maximality of N_1 , $N_1 = aR + N_1$. Then $a \in N_1$. Then $N = N_1$ is finitely generated.

(FBC \implies ACC) Let $N_1 \subsetneq N_2 \subsetneq \cdots$ be an infinite chain of ideals of R.

Let $N = \bigcup_{i \ge 1} N_i$. Then N is an ideal of R. By FBC, there are $b_1, b_2, \ldots, b_n \in N$ such that $N = \langle b_1, b_2, \ldots, b_n \rangle$. For each *i*, b_i belongs to some N_{r_i} . Take r to be the maximum of the r_i 's. Then, b_i belongs to N_r for all *i*.

It follows that $N_r \subsetneq N_{r+1} \subseteq N = \langle b_1, b_2, \dots, b_n \rangle \subseteq N_r$. Contradiction arises. Therefore, ACC holds.

4. Prove or disprove the following statement: If ν is a Euclidean norm on Euclidean domain D, then $\{a \in D | \nu(a) > \nu(1)\} \cup \{0\}$ is an ideal of D.

Answer. The statement is false, here is a counter-example.

Let F be a field of characteristic $\neq 2$. Let D = F[x], and $\nu(f) = \deg(f)$ is a Euclidean norm on D. Now both 1 + x and 1 - x have norm 1 which is greater than $0 = \nu(1)$. However, (1 + x) + (1 - x) = 2 has norm $0 \neq \nu(1)$.

5. Show that every field is a Euclidean domain.

Proof. Let F be a field. Define $\nu(x) = 1$ for all $x \in F^{\times}$. That $\nu(a) \leq \nu(ab)$ for $a, b \neq 0$ is clear. Now for $a, b \in F$ with $b \neq 0$, we have $a = (ab^{-1})b + 0$. Simply take r = 0. It follows that ν is a Euclidean norm on F.

- 6. Let $\langle \alpha \rangle$ be a non-zero principal ideal in $\mathbb{Z}[i]$.
 - (a) Show that $\mathbb{Z}[i]/\langle \alpha \rangle$ is a finite ring.
 - (b) Show that if π is an irreducible of $\mathbb{Z}[i]$, then $\mathbb{Z}[i]/\langle \pi \rangle$ is a field.
 - (c) Referring to part b, find the order and characteristic of each of the following fields.
 - i. $\mathbb{Z}[i]/\langle 3 \rangle$ ii. $\mathbb{Z}[i]/\langle 1+i \rangle$ iii. $\mathbb{Z}[i]/\langle 1+2i \rangle$
 - *Proof.* (a) Recall that $\mathbb{Z}[i]$ is a Euclidean domain with a norm defined by $N(a + ib) = a^2 + b^2$.

Note that $N(\alpha) \in \mathbb{Z}[i]$. Then for any $a, b \in \mathbb{Z}$, there exists some $0 \leq c, d \leq N(\alpha)-1$ such that $a \equiv c \pmod{N(\alpha)}$ and $b \equiv d \pmod{N(\alpha)}$. Then $a+bi+\langle \alpha \rangle = c + di + \langle \alpha \rangle$. Since (c, d) has $|N(\alpha)|^2$ choices, $|\mathbb{Z}[i]/\langle \alpha \rangle| \leq |N(\alpha)|^2$.

(b) Let π be an irreducible of Z[i]. Then (π) is maximal among principle ideals other than Z[i].

Since $\mathbb{Z}[i]$ is a Euclidean domain, it is a PID. Then $\langle \pi \rangle$ is maximal among all ideals other than $\mathbb{Z}[i]$. That is, $\langle \pi \rangle$ is a maximal ideal in $\mathbb{Z}[i]$. Then $\mathbb{Z}[i]/(\pi)$ is a field.

- (c) i. $\mathbb{Z}[i]/\langle 3 \rangle \simeq \mathbb{Z}[x]/(x^2+1,3) \simeq \mathbb{F}_3[x]/(x^2+1)$. The order is 9 and the characteristic is 3.
 - ii. $\mathbb{Z}[i]/\langle 1+i\rangle \simeq \mathbb{Z}[x]/(x+1,x^2+1) \simeq \mathbb{Z}[x]/(x+1,2) \simeq \mathbb{F}_2[x]/(x+1) \simeq \mathbb{F}_2$. The order is 2 and the characteristic is 2.
 - iii. $\mathbb{Z}[i]/\langle 1+2i\rangle \simeq \mathbb{Z}[x]/(1+2x, x^2+1) = \mathbb{Z}[x]/(5, x+3) \simeq \mathbb{F}_5[x]/(x+3) \simeq \mathbb{F}_5$. The order is 5 and the characteristic is 5.
- 7. Let $n \in \mathbb{Z}^+$ be square free, that is , not divisible by the square of any prime integer. Let $\mathbb{Z}[\sqrt{-n}] = \{a + ib\sqrt{n} | a, b \in \mathbb{Z}\}.$
 - (a) Show that the norm N, defined by $N(\alpha) = a^2 + nb^2$ for $\alpha = a + ib\sqrt{n}$, is a multiplicative norm on $\mathbb{Z}[\sqrt{-n}]$.

- (b) Show that $N(\alpha) = 1$ for $\alpha \in \mathbb{Z}[\sqrt{-n}]$ if and only if α is a unit of $\mathbb{Z}[\sqrt{-n}]$.
- (c) Show that every non-zero $\alpha \in \mathbb{Z}[\sqrt{-n}]$ that is not a unit has a factorization into irreducibles in $\mathbb{Z}[\sqrt{-n}]$.
- *Proof.* (a) Note that $N(\alpha) = \alpha \overline{\alpha}$. Then for $\alpha, \beta \in \mathbb{Z}[\sqrt{-n}]$, $N(\alpha\beta) = \alpha\beta\overline{\alpha\beta} = \alpha\overline{\alpha}\overline{\beta}\overline{\beta} = N(\alpha)N(\beta)$. It follows that N is multiplicative.
 - (b) Suppose α is a unit in $\mathbb{Z}[\sqrt{-n}]$. Then $\alpha\beta = 1$ for some $b \in \mathbb{Z}[\sqrt{-n}]$. Then $N(\alpha)N(\beta) = N(\alpha\beta) = N(1) = 1$. Since the range of N is a subset of $\mathbb{Z}_{\geq 0}$, $N(\alpha) = 1$.

Conversely, suppose $\alpha \in \mathbb{Z}[\sqrt{-n}]$ has norm $N(\alpha) = 1$, then $\alpha \overline{\alpha} = 1$, and $\overline{\alpha} \in \mathbb{Z}[\sqrt{-n}]$. Therefore, α is a unit of $\mathbb{Z}[\sqrt{-n}]$.

(c) Suppose the statement is incorrect. Let $\alpha \in \mathbb{Z}[\sqrt{-n}]$ be a nonunit without such factorization such that any $\beta \in \mathbb{Z}[\sqrt{-n}] - \{0\}$ with $N(\beta) < N(\alpha)$ is either a unit or has a factorization into irreducibles in $\mathbb{Z}[\sqrt{-n}]$.

Then by (b), $N(\alpha) \ge 2$. Since α does not have factorization into irreducibles, α is not an irreducible itself. Then $\alpha = \beta \gamma$ for some nonunits $\beta, \gamma \in \mathbb{Z}[\sqrt{-n}]$. Then $N(\alpha) = N(\beta)N(\gamma)$, and $N(\beta), N(\gamma) \ge 2$. Then $N(\beta), N(\gamma) \le N(\alpha)$, and so have factorization into irreducibles. Then α also has a factorization into irreducibles. Contradiction arises.

Therefore, every non-zero $\alpha \in \mathbb{Z}[\sqrt{-n}]$ that is not a unit has a factorization into irreducibles in $\mathbb{Z}[\sqrt{-n}]$.

Optional Part

Let R be any ring. The descending chain condition (DCC) for ideals holds in R if every strictly decreasing sequence N₁ ⊃ N₂ ⊃ N₃ ⊃ · · · of ideals in R is of finite length. The minimum condition (mC) for ideals holds in R if given any set S of ideals of R, there is an ideal of S that does not properly contain any other ideal in the set S. Show that for every ring, the conditions DCC and mC are equivalent.

Proof. (DCC \implies mC) Let S be a non-empty set of ideals of R. Suppose mC is false. Then for each $N \in S$, there is an $N' \in S$ such that $N' \subsetneq N$. Fix a member N_1 of S (possible since $S \neq \emptyset$). Then we define inductively an infinite sequence of ideals N_i such that $N_i \in S$ and $N_{i+1} \subsetneq N_i$ for all i. This contradicts the assumption of DCC.

(mC \implies DCC) Let $N_1 \supseteq N_2 \supseteq N_3 \supseteq \cdots$ be an infinite strictly decreasing sequence of ideals of R. Let $S = \{N_i | i1\}$ be a non-empty set of ideals of R. Then mC implies that there is a member N_r of S which does not contain any other member of S. But this is impossible since $N_r \supseteq N_{r+1}$.

2. Give an example of a ring in which ACC holds but DCC does not hold.

Answer. An example is given by \mathbb{Z} . That it satisfies ACC basically follows from the fact the every non-zero integer has a finite number of divisors. On the other hand, \mathbb{Z} does not satisfies DCC because $2\mathbb{Z} \supseteq 4\mathbb{Z} \supseteq 8\mathbb{Z} \supseteq \cdots \supseteq 2^n\mathbb{Z} \supseteq \cdots$.

- 3. Let ν be a Euclidean norm on a Euclidean domain D.
 - **a.** Show that if $s \in \mathbb{Z}$ such that $s + \nu(1) > 0$, then $\eta : D^* \to \mathbb{Z}$ defined by $\eta(a) = \nu(a) + s$ for non-zero $a \in D$ is a Euclidean norm on D. As usual, D^* is the set of non-zero elements of D.
 - **b.** Show that for $t \in \mathbb{Z}^+$, $\lambda : D^* \to \mathbb{Z}$ given by $\lambda(a) = t \cdot \nu(a)$ for non-zero $a \in D$ is a Euclidean norm on D.
 - c. Show that there exists a Euclidean norm μ on D such that $\mu(1) = 1$ and $\mu(a) > 100$ for all non-zero non-units $a \in D$.
 - *Proof.* **a,b.** Note first that if $\eta(1) = \nu(1) + s > 0$, then for any $a \in D^*$, $\eta(a) = \nu(a \cdot 1) + s \ge \nu(1) + s > 0$. The rest of the proof follows from the inequalities $\nu(a) \le \nu(ab)$ and $\nu(r) < \nu(b)$ (from the division) about the norm ν because they imply immediately that $\eta(a) = \nu(a) + s \le \nu(ab) + s = \eta(ab)$ (resp. $\lambda(a) = t \cdot \nu(a) \le t \cdot \nu(ab) = \lambda(ab)$) and $\eta(r) = \nu(r) + s < \nu(b) + s = \eta(b)$ (resp. $\lambda(r) = t \cdot \nu(r) < t \cdot \nu(b) = \lambda(b)$).
 - c. Take μ(a) = 100(ν(a) − ν(1)) + 1 for a ∈ D*. (Note that a ∈ D* is a unit if and only if ν(a) = ν(1).) That μ is a Euclidean norm follows immediately from (a) and (b).
- 4. Let D be a UFD. Show that all common multiples, in the obvious sense, of both a and b form an ideal of D.

Proof. Denote the set of all common multiples of a, b by D(a, b),

- x, y ∈ D(a, b) ⇒ x + y ∈ D(a, b) : Let x, y ∈ D(a, b). Then a|x, b|x, a|y, b|y. It follows that a|(x + y), b|(x + y).
 r ∈ R, x ∈ D(a, b) ⇒ rx ∈ D(a, b) :
 - Let $x \in D(a, b)$. Then a|rx, b|rx.

- 5. Let D be a UFD. An element c in D is a **least common multiple** (abbreviated lcm) of two elements a and b in D if a|c, b|c and if c divides every element of D that is divisible by both a and b. Show that every two non-zero elements a and b of a Euclidean domain D have an lcm in D.

Proof. Let D be a Euclidean domain and let a, b be two non-zero elements of D.

Then *D* is a PID. Hence the ideal $\langle a \rangle \cap \langle b \rangle$ is principal. Let *c* be a generator of this ideal. Then $c \in \langle a \rangle$ and $c \in \langle b \rangle$, implying that a | c and b | c. Suppose $c' \in D$ satisfies a | c' and b | c'. Then *c'* belongs to $\langle a \rangle$ and $\langle b \rangle$, and hence to $\langle a \rangle \cap \langle b \rangle = \langle c \rangle$. It follows that c | c'. \Box