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Compulsory Part

1. Prove that if p is an irreducible in a UFD, then p is a prime.

Proof. Let p be an irreducible in a UFD R. Let a, b ∈ R. Suppose p | ab. Write a =
π1...πr and b = π′

1...π
′
s, where πi, π

′
j are all irreducibles in R. Since p | ab, p is an

associate of some πi or π′
j . Then p | a or p | b. That is, p is a prime.

2. Let D be a UFD. Show that a non-constant divisor of a primitive polynomial in D[x] is
again a primitive polynomial.

Proof. Recall that a polynomial is primitive if and only if 1 is a content of it. Suppose f
is a primitive polynomial, and f = g ·h where g is non-constant divisor. Then any content
of f is a divisor of any content of g. But 1 is a content of f , so any content of g is a unit,
i.e. 1 is a content of g.

3. Let R be any ring. The ascending chain condition (ACC) for ideals holds in R if every
strictly increasing sequence N1 ⊂ N2 ⊂ N3 ⊂ · · · of ideals in R is of finite length.
The maximum condition (MC) for ideals holds in R if every non-empty set S of ideals
in R contains an ideal not properly contained in any other ideal of the set S. The finite
basis condition (FBC) for ideals holds in R if for each ideal N in R, there is a finite set
BN = {b1, · · · , bn} ⊆ N such that N is the intersection of all ideals of R containing BN .
The BN is a finite generating set for N .
Show that for every ring R, the conditions ACC, MC, and FBC are equivalent.

Proof. (ACC =⇒ MC) Let R be a ring satisfying ACC but not MC. Then there is a
nonempty set S of ideals of R without maximal element. Then for each ideal N ∈ S,
there is an N ′ ∈ S such that N ⊊ N ′.

Let N1 be an ideal in R. We can inductively define an ideal Ni+1 of R with Ni+1 ⊋ Ni.
This violates ACC. Therefore, ACC implies MC.

(MC =⇒ FBC) Let R be a ring satisfying MC. Let N be an ideal in R. Let S be the set
of finitely generated ideals of R contained in N . Then S contains a maximal element N1

by MC. Then N1 ⊆ N and N1 is finitely generated. For any a ∈ N , aR + N1 ⊆ N is
again finitely generated, and N1 ⊆ aR +N1. By the maximality of N1, N1 = aR +N1.
Then a ∈ N1. Then N = N1 is finitely generated.

(FBC =⇒ ACC) Let N1 ⊊ N2 ⊊ · · · be an infinite chain of ideals of R.

Let N =
⋃

i≥1Ni. Then N is an ideal of R. By FBC, there are b1, b2, . . . , bn ∈ N such
that N = ⟨b1, b2, . . . , bn⟩. For each i, bi belongs to some Nri . Take r to be the maximum
of the ri’s. Then, bi belongs to Nr for all i.

It follows that Nr ⊊ Nr+1 ⊆ N = ⟨b1, b2, . . . , bn⟩ ⊆ Nr. Contradiction arises. Therefore,
ACC holds.
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4. Prove or disprove the following statement: If ν is a Euclidean norm on Euclidean domain
D, then {a ∈ D| ν(a) > ν(1)} ∪ {0} is an ideal of D.

Answer. The statement is false, here is a counter-example.

Let F be a field of characteristic ̸= 2. Let D = F [x], and ν(f) = deg(f) is a Euclidean
norm on D. Now both 1 + x and 1 − x have norm 1 which is greater than 0 = ν(1).
However, (1 + x) + (1− x) = 2 has norm 0 ̸> ν(1).

5. Show that every field is a Euclidean domain.

Proof. Let F be a field. Define ν(x) = 1 for all x ∈ F×. That ν(a) ≤ ν(ab) for a, b ̸= 0
is clear. Now for a, b ∈ F with b ̸= 0, we have a = (ab−1)b + 0. Simply take r = 0. It
follows that ν is a Euclidean norm on F .

6. Let ⟨α⟩ be a non-zero principal ideal in Z[i].

(a) Show that Z[i]/⟨α⟩ is a finite ring.

(b) Show that if π is an irreducible of Z[i], then Z[i]/⟨π⟩ is a field.

(c) Referring to part b, find the order and characteristic of each of the following fields.

i. Z[i]/⟨3⟩
ii. Z[i]/⟨1 + i⟩

iii. Z[i]/⟨1 + 2i⟩

Proof. (a) Recall that Z[i] is a Euclidean domain with a norm defined by N(a + ib) =
a2 + b2.
Note that N(α) ∈ Z[i]. Then for any a, b ∈ Z, there exists some 0 ≤ c, d ≤
N(α)−1 such that a ≡ c (mod N(α)) and b ≡ d (mod N(α)). Then a+bi+⟨α⟩ =
c+ di+ ⟨α⟩. Since (c, d) has |N(α)|2 choices, |Z[i]/⟨α⟩| ≤ |N(α)|2.

(b) Let π be an irreducible of Z[i]. Then ⟨π⟩ is maximal among principle ideals other
than Z[i].
Since Z[i] is a Euclidean domain, it is a PID. Then ⟨π⟩ is maximal among all ideals
other than Z[i]. That is, ⟨π⟩ is a maximal ideal in Z[i]. Then Z[i]/(π) is a field.

(c) i. Z[i]/⟨3⟩ ≃ Z[x]/(x2 + 1, 3) ≃ F3[x]/(x
2 + 1). The order is 9 and the charac-

teristic is 3.
ii. Z[i]/⟨1 + i⟩ ≃ Z[x]/(x+ 1, x2 + 1) ≃ Z[x]/(x+ 1, 2) ≃ F2[x]/(x+ 1) ≃ F2.

The order is 2 and the characteristic is 2.
iii. Z[i]/⟨1+2i⟩ ≃ Z[x]/(1+2x, x2+1) = Z[x]/(5, x+3) ≃ F5[x]/(x+3) ≃ F5.

The order is 5 and the characteristic is 5.

7. Let n ∈ Z+ be square free, that is , not divisible by the square of any prime integer. Let
Z[
√
−n] = {a+ ib

√
n|a, b ∈ Z}.

(a) Show that the norm N , defined by N(α) = a2 + nb2 for α = a + ib
√
n, is a

multiplicative norm on Z[
√
−n].
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(b) Show that N(α) = 1 for α ∈ Z[
√
−n] if and only if α is a unit of Z[

√
−n].

(c) Show that every non-zero α ∈ Z[
√
−n] that is not a unit has a factorization into

irreducibles in Z[
√
−n].

Proof. (a) Note that N(α) = αα. Then for α, β ∈ Z[
√
−n], N(αβ) = αβαβ =

ααββ = N(α)N(β). It follows that N is multiplicative.

(b) Suppose α is a unit in Z[
√
−n]. Then αβ = 1 for some b ∈ Z[

√
−n]. Then

N(α)N(β) = N(αβ) = N(1) = 1. Since the range of N is a subset of Z≥0,
N(α) = 1.
Conversely, suppose α ∈ Z[

√
−n] has norm N(α) = 1, then αα = 1, and α ∈

Z[
√
−n]. Therefore, α is a unit of Z[

√
−n].

(c) Suppose the statement is incorrect. Let α ∈ Z[
√
−n] be a nonunit without such

factorization such that any β ∈ Z[
√
−n] − {0} with N(β) < N(α) is either a unit

or has a factorization into irreducibles in Z[
√
−n].

Then by (b), N(α) ≥ 2. Since α does not have factorization into irreducibles, α is
not an irreducible itself. Then α = βγ for some nonunits β, γ ∈ Z[

√
−n]. Then

N(α) = N(β)N(γ), and N(β), N(γ) ≥ 2. Then N(β), N(γ) ≤ N(α), and so have
factorization into irreducibles. Then α also has a factorization into irreducibles.
Contradiction arises.
Therefore, every non-zero α ∈ Z[

√
−n] that is not a unit has a factorization into

irreducibles in Z[
√
−n].
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Optional Part

1. Let R be any ring. The descending chain condition (DCC) for ideals holds in R if every
strictly decreasing sequence N1 ⊃ N2 ⊃ N3 ⊃ · · · of ideals in R is of finite length. The
minimum condition (mC) for ideals holds in R if given any set S of ideals of R, there
is an ideal of S that does not properly contain any other ideal in the set S.
Show that for every ring, the conditions DCC and mC are equivalent.

Proof. (DCC =⇒ mC) Let S be a non-empty set of ideals of R. Suppose mC is false.
Then for each N ∈ S, there is an N ′ ∈ S such that N ′ ⊊ N . Fix a member N1 of S
(possible since S ̸= ∅). Then we define inductively an infinite sequence of ideals Ni such
that Ni ∈ S and Ni+1 ⊊ Ni for all i. This contradicts the assumption of DCC.

(mC =⇒ DCC) Let N1 ⊋ N2 ⊋ N3 ⊋ · · · be an infinite strictly decreasing sequence of
ideals of R. Let S = {Ni|i1} be a non-empty set of ideals of R. Then mC implies that
there is a member Nr of S which does not contain any other member of S. But this is
impossible since Nr ⊋ Nr+1.

2. Give an example of a ring in which ACC holds but DCC does not hold.

Answer. An example is given by Z. That it satisfies ACC basically follows from the fact
the every non-zero integer has a finite number of divisors. On the other hand, Z does not
satisfies DCC because 2Z ⊋ 4Z ⊋ 8Z ⊋ · · · ⊋ 2nZ ⊋ · · · .

3. Let ν be a Euclidean norm on a Euclidean domain D.

a. Show that if s ∈ Z such that s + ν(1) > 0, then η : D∗ → Z defined by η(a) =
ν(a) + s for non-zero a ∈ D is a Euclidean norm on D. As usual, D∗ is the set of
non-zero elements of D.

b. Show that for t ∈ Z+, λ : D∗ → Z given by λ(a) = t · ν(a) for non-zero a ∈ D is a
Euclidean norm on D.

c. Show that there exists a Euclidean norm µ on D such that µ(1) = 1 and µ(a) > 100
for all non-zero non-units a ∈ D.

Proof. a,b. Note first that if η(1) = ν(1) + s > 0, then for any a ∈ D∗, η(a) =
ν(a · 1) + s ≥ ν(1) + s > 0. The rest of the proof follows from the inequalities
ν(a) ≤ ν(ab) and ν(r) < ν(b) (from the division) about the norm ν because they
imply immediately that η(a) = ν(a) + s ≤ ν(ab) + s = η(ab) (resp. λ(a) =
t · ν(a) ≤ t · ν(ab) = λ(ab)) and η(r) = ν(r) + s < ν(b) + s = η(b) (resp.
λ(r) = t · ν(r) < t · ν(b) = λ(b)).

c. Take µ(a) = 100(ν(a) − ν(1)) + 1 for a ∈ D∗. (Note that a ∈ D∗ is a unit if and
only if ν(a) = ν(1).) That µ is a Euclidean norm follows immediately from (a) and
(b).

4. Let D be a UFD. Show that all common multiples, in the obvious sense, of both a and b
form an ideal of D.
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Proof. Denote the set of all common multiples of a, b by D(a, b),

• x, y ∈ D(a, b) ⇒ x+ y ∈ D(a, b) :

Let x, y ∈ D(a, b). Then a|x, b|x, a|y, b|y. It follows that a|(x+ y), b|(x+ y).

• r ∈ R, x ∈ D(a, b) ⇒ rx ∈ D(a, b) :

Let x ∈ D(a, b). Then a|rx, b|rx.

5. Let D be a UFD. An element c in D is a least common multiple (abbreviated lcm) of
two elements a and b in D if a|c, b|c and if c divides every element of D that is divisible
by both a and b. Show that every two non-zero elements a and b of a Euclidean domain
D have an lcm in D.

Proof. Let D be a Euclidean domain and let a, b be two non-zero elements of D.

Then D is a PID. Hence the ideal ⟨a⟩ ∩ ⟨b⟩ is principal. Let c be a generator of this ideal.
Then c ∈ ⟨a⟩ and c ∈ ⟨b⟩, implying that a|c and b|c. Suppose c′ ∈ D satisfies a|c′ and
b|c′. Then c′ belongs to ⟨a⟩ and ⟨b⟩, and hence to ⟨a⟩ ∩ ⟨b⟩ = ⟨c⟩. It follows that c|c′.


