THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 9
 Due Date: 30th November 2023

Compulsory Part

1. Let R be a commutative ring and I an ideal of R. Show that the set \sqrt{I} of all $a \in R$, such that $a^{n} \in I$ for some $n \in \mathbb{Z}^{+}$, is an ideal of R, called the radical of I.
2. Show by examples that for proper ideals I of a commutative ring R,
(a) \sqrt{I} need not equal I.
(b) \sqrt{I} may equal I.
3. Prove that $\mathbb{Z}[x]$ is not a PID by showing that the ideal $\langle 2, x\rangle$ is not principal.
4. Let D be an integral domain. Show that, for $k=1, \ldots, n$, the ideal $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ is prime in $D\left[x_{1}, \ldots, x_{n}\right]$.
5. Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings, and let $I \subset S$ be an ideal. Prove that if I is a prime ideal in S, then $\varphi^{-1}(I)$ is a prime ideal in R. Show by giving an exmple that, however, $\varphi^{-1}(I)$ is not necessarily maximal when I is maximal.
6. Let R be a commutative ring, and let P be a prime ideal of R. Suppose that 0 is the only zero-divisor of R contained in P. Show that R is an integral domain.
7. Show that every prime ideal in a finite commutative ring R is a maximal ideal.

Optional Part

1. An element a of a ring R is nilpotent if $a^{n}=0$ for some $n \in \mathbb{Z}^{+}$.

Show that the collection N of all nilpotent elements in a commutative ring R is an ideal, called the nilradical of R.
2. Show that the nilradical N of a commutative ring R is contained in every prime ideal of R. (Actually N is the intersection of all prime ideals in R.)
3. What is the relationship between the radical \sqrt{I} of an ideal I in a commutative ring R and the nilradical of the quotient ring R / I ? Explain your answer carefully.
4. Let F be a subfield of a field E.
(a) For $\alpha_{1}, \ldots, \alpha_{n} \in E$, define the evaluation map

$$
\phi_{\alpha_{1}, \cdots, \alpha_{n}}: F\left[x_{1}, \cdots, x_{n}\right] \rightarrow E
$$

by sending $f\left(x_{1}, \ldots, x_{n}\right)$ to $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Show that $\phi_{\alpha_{1}, \cdots, \alpha_{n}}$ is a ring homomorphism. We say that $\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in F^{n}$ is a zero of $f=f\left(x_{1}, \cdots, x_{n}\right)$ if $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$, or equivalently, if $\phi_{\alpha_{1}, \cdots, \alpha_{n}}(f)=0$.
(b) Given a subset $V \subset F^{n}$, show that the set of polynomials $f \in F\left[x_{1}, \cdots, x_{n}\right]$ such that every element in V is a zero of f forms an ideal of $F\left[x_{1}, \cdots, x_{n}\right]$.
5. Prove the equivalence of the following two statements:

Fundamental Theorem of Algebra: Every nonconstant polynomial in $\mathbb{C}[x]$ has a zero in \mathbb{C}.
Nullstellensatz for $\mathbb{C}[x]$: Let $f_{1}(x), \ldots, f_{r}(x) \in \mathbb{C}[x]$ and suppose that every $\alpha \in \mathbb{C}$ that is a zero of all r of these polynomials is also a zero of a polynomial $g(x)$ in $\mathbb{C}[x]$. Then some power of $g(x)$ is in the smallest ideal of $\mathbb{C}[x]$ that contains the r polynomials $f_{1}(x), \ldots, f_{r}(x)$.

