THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 7
 Due Date: 9th November 2023

Compulsory Part

1. Let G be a finite group, and suppose that there exist representatives g_{1}, \ldots, g_{r} of the r distinct conjugacy classes in G such that $g_{i} g_{j}=g_{j} g_{i}$ for all i, j. Show that G is abelian.
2. Let G be a finite group and let primes p and $q \neq p$ divide $|G|$. Prove that if G has precisely one proper Sylow p-subgroup, then it must be a normal subgroup, and hence G is not simple.
3. Let G be a finite group and let p be a prime dividing $|G|$. Let P be a Sylow p-subgroup of G.
(a) Show that P is the only Sylow p-subgroup of $N_{G}\left(N_{G}(P)\right)$.
(b) Using part (a) and applying Sylow Theorems, show that $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$.
4. Show that there are no simple groups of order $p^{r} m$, where p is a prime, r is a positive integer, and $1<m<p$.
5. Let G be a group of order 6 . Suppose G is not abelian.
(a) Show that G has three subgroups of order 2 .
(b) Show that there is a homomorphism $\phi: G \rightarrow S_{3}$ with $|\operatorname{ker}(\phi)| \leq 2$. [Hint: Consider the action of G on the set of left cosets of a subgroup of order 2 in G (as in HW6, Optional Q.5).]
(c) Show that $G \simeq S_{3}$.
6. (a) Let G be a finite group, and $H, K<G$. Show that

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|} .
$$

(Note that $H K$ may not be a subgroup of G, so the above is just an equality between orders of sets.)
(b) Suppose that G is a finite group of order 48.
i. Applying Sylow Theorems, show that the number n_{2} of Sylow 2-subgroups in G is either 1 or 3 .
ii. Suppose that $n_{2}=3$ and let H, K be two distinct Syloew 2-subgroups in G. Show that $|H \cap K|=8$ by applying part (a). From this and considering the normalizer $N_{G}(H \cap K)$, deduce that $H \cap K$ is normal in G, thereby showing that G cannot be simple.

Optional Part

1. Let G be a finite group of odd order. Suppose that $g \in G$ and g^{-1} lie in the same conjugacy class. Show that $g=e$.
2. Show that every group of order 30 contains a subgroup of order 15 .
3. Prove that no group of order 160 is simple.
4. How many elements of order 7 are there in a simple group of order 168 ?
5. Let p, q be prime numbers. Show that a group of order $p^{2} q$ is solvable.
6. Let $p<q<r$ be prime numbers. Show that a group of order $p q r$ is not simple.
