THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 4
 Due Date: 12th October 2023

Compulsory Part

1. Show that the center of a direct product is the direct product of the centers, i.e.

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)
$$

Deduce that a direct product of groups is abelian if and only if each of the factors is abelian.
2. Show that if G is nonabelian, then the quotient group $G / Z(G)$ is not cyclic.
[Hint: Show the equivalent contrapositive, namely, that if $G / Z(G)$ is cyclic then G is abelian (and hence $Z(G)=G$).]
3. Using the preceding question, show that a nonabelian group G of order $p q$ where p and q are primes has a trivial center.
4. Let N be a normal subgroup of G and let H be any subgroup of G. Let $H N=\{h n \mid h \in$ $H, n \in N\}$. Show that $H N$ is a subgroup of G, and is the smallest subgroup containing both N and H.
5. Show directly from the definition of a normal subgroup that if H and N are subgroups of a group G, and N is normal in G, then $H \cap N$ is normal in H.
6. Let H, K, and L be normal subgroups of G with $H<K<L$. Let $A=G / H, B=K / H$, and $C=L / H$.
(a) Show that B and C are normal subgroups of A, and $B<C$.
(b) To what quotient group of G is $(A / B) /(C / B)$ isomorphic?

Optional Part

1. Let F be a field, and $n \in \mathbb{Z}_{>0}$.
(a) Show that $S L_{n}(F)$ is a normal subgroup in $G L_{n}(F)$.
(b) When F is a finite field, show that $\left[G L_{n}(F): S L_{n}(F)\right]=|F|-1$.
2. Let $F=F^{A}$ be the free group on two generators $A=\{a, b\}$. Show that the normal subgroup generated by the single commutator $a b a^{-1} b^{-1}$ is the commutator of F.
3. Show that the converse to the Theorem of Lagrange holds for an abelian group, namely, if G is a finite abelian group and $d||G|$, then there exists a subgroup of G of order d.
4. Prove that A_{n} is simple for $n \geq 5$, following the steps and hints given.
(a) Show that A_{n} contains every 3 -cycle if $n \geq 3$.
(b) Show that A_{n} is generated by the 3 -cycles for $n \geq 3$ [Hint: Note that $(a, b)(c, d)=$ $(a, c, b)(a, c, d)$ and $(a, c)(a, b)=(a, b, c)$.]
(c) Let r and s be fixed elements of $\{1,2, \cdots, n\}$ for $n \geq 3$. Show that A_{n} is generated by the n "special" 3 -cycles of the form (r, s, i) for $1 \leq i \leq n$. [Hint: Show every 3 -cycle is the product of "special" 3 -cycles by computing

$$
(r, s, i)^{2},(r, s, j)(r, s, i)^{2},(r, s, j)^{2}(r, s, i),
$$

and

$$
(r, s, i)^{2}(r, s, k)(r, s, j)^{2}(r, s, i)
$$

Observe that these products give all possible types of 3-cycles.]
(d) Let N be a normal subgroup of A_{n} for $n \geq 3$. Show that if N contains a 3 -cycle, then $N=A_{n}$. [Hint: Show that $(r, s, i) \in N$ implies that $(r, s, j) \in N$ for $j=$ $1,2, \cdots, n$ by computing

$$
\left.((r, s)(i, j))(r, s, i)^{2}((r, s)(i, j))^{-1} .\right]
$$

(e) Let N be a nontrivial normal subgroup of A_{n} for $n \geq 5$. Show that one of the following cases must hold, and conclude in each case that $N=A_{n}$.
Case I N contains a 3 -cycle.
Case II N contains a product of disjoint cycles, at least one of which has length greater than 3. [Hint: Suppose N contains the disjoint product $\sigma=\mu\left(a_{1}, a_{2}, \cdots, a_{r}\right)$. Show $\sigma^{-1}\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1}$ is in N, and compute it.]
Case III N contains a disjoint product of the form $\sigma=\mu\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)$. [Hint: Show $\sigma^{-1}\left(a_{1}, a_{2}, a_{4}\right) \sigma\left(a_{1}, a_{2}, a_{4}\right)^{-1}$ is in N, and compute it.]
Case IV N contains a disjoint product of the form $\sigma=\mu\left(a_{1}, a_{2}, a_{3}\right)$ where μ is a product of disjoint 2 -cycles. [Hint: Show $\sigma^{2} \in N$ and compute it.]
Case V N contains a disjoint product σ of the form $\sigma=\mu\left(a_{3}, a_{4}\right)\left(a_{1}, a_{2}\right)$, where μ is a product of an even number of disjoint 2 -cycles.
[Hint: Show that $\sigma^{-1}\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1}$ is in N, and compute it to deduce that $\alpha=\left(a_{2}, a_{4}\right)\left(a_{1}, a_{3}\right)$ is in N. Using $n \geq 5$ for the first time, find $i \neq a_{1}, a_{2}, a_{3}, a_{4}$ in $\{1,2, \cdots, n\}$. Let $\beta=\left(a_{1}, a_{3}, i\right)$. Show that $\beta^{-1} \alpha \beta \alpha \in N$, and compute it.]

