THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 10

Due Date: 4th December 2023 (Note that this is a Monday!)

Compulsory Part

1. Prove that if p is an irreducible in a UFD, then p is a prime.
2. Let D be a UFD. Show that a non-constant divisor of a primitive polynomial in $D[x]$ is again a primitive polynomial.
3. Let R be any ring. The ascending chain condition (ACC) for ideals holds in R if every strictly increasing sequence $N_{1} \subset N_{2} \subset N_{3} \subset \cdots$ of ideals in R is of finite length. The maximum condition (MC) for ideals holds in R if every non-empty set S of ideals in R contains an ideal not properly contained in any other ideal of the set S. The finite basis condition (FBC) for ideals holds in R if for each ideal N in R, there is a finite set $B_{N}=\left\{b_{1}, \cdots, b_{n}\right\} \subseteq N$ such that N is the intersection of all ideals of R containing B_{N}. The B_{N} is a finite generating set for N.
Show that for every ring R, the conditions ACC, MC, and FBC are equivalent.
4. Prove or disprove the following statement: If ν is a Euclidean norm on Euclidean domain D, then $\{a \in D: \nu(a)>\nu(1)\} \cup\{0\}$ is an ideal of D.
5. Show that every field is a Euclidean domain.
6. Let $\langle\alpha\rangle$ be a non-zero principal ideal in $\mathbb{Z}[i]$.
(a) Show that $\mathbb{Z}[i] /\langle\alpha\rangle$ is a finite ring.
(b) Show that if π is an irreducible of $\mathbb{Z}[i]$, then $\mathbb{Z}[i] /\langle\pi\rangle$ is a field.
(c) Referring to part b , find the order and characteristic of each of the following fields.
i. $\mathbb{Z}[i] /\langle 3\rangle$
ii. $\mathbb{Z}[i] /\langle 1+i\rangle$
iii. $\mathbb{Z}[i] /\langle 1+2 i\rangle$
7. Let $n \in \mathbb{Z}^{+}$be square free, that is, not divisible by the square of any prime integer. Let $\mathbb{Z}[\sqrt{-n}]=\{a+i b \sqrt{n} \mid a, b \in \mathbb{Z}\}$.
(a) Show that the norm N, defined by $N(\alpha)=a^{2}+n b^{2}$ for $\alpha=a+i b \sqrt{n}$, is a multiplicative norm on $\mathbb{Z}[\sqrt{-n}]$.
(b) Show that $N(\alpha)=1$ for $\alpha \in \mathbb{Z}[\sqrt{-n}]$ if and only if α is a unit of $\mathbb{Z}[\sqrt{-n}]$.
(c) Show that every non-zero $\alpha \in \mathbb{Z}[\sqrt{-n}]$ that is not a unit has a factorization into irreducibles in $\mathbb{Z}[\sqrt{-n}]$.

Optional Part

1. Let R be any ring. The descending chain condition (DCC) for ideals holds in R if every strictly decreasing sequence $N_{1} \supset N_{2} \supset N_{3} \supset \cdots$ of ideals in R is of finite length. The minimum condition ($\mathbf{m C}$) for ideals holds in R if given any set S of ideals of R, there is an ideal of S that does not properly contain any other ideal in the set S. Show that for every ring, the conditions DCC and mC are equivalent.
2. Give an example of a ring in which ACC holds but DCC does not hold.
3. Let ν be a Euclidean norm on a Euclidean domain D.
a. Show that if $s \in \mathbb{Z}$ such that $s+\nu(1)>0$, then $\eta: D^{*} \rightarrow \mathbb{Z}$ defined by $\eta(a)=$ $\nu(a)+s$ for non-zero $a \in D$ is a Euclidean norm on D. As usual, D^{*} is the set of non-zero elements of D.
b. Show that for $t \in \mathbb{Z}^{+}, \lambda: D^{*} \rightarrow \mathbb{Z}$ given by $\lambda(a)=t \cdot \nu(a)$ for non-zero $a \in D$ is a Euclidean norm on D.
c. Show that there exists a Euclidean norm μ on D such that $\mu(1)=1$ and $\mu(a)>100$ for all non-zero non-units $a \in D$.
4. Let D be a UFD. Show that all common multiples, in the obvious sense, of both a and b form an ideal of D.
5. Let D be a UFD. An element c in D is a least common multiple (abbreviated lcm) of two elements a and b in D if $a|c, b| c$ and if c divides every element of D that is divisible by both a and b. Show that every two non-zero elements a and b of a Euclidean domain D have an lcm in D.
