THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 1
 Due Date: 14th September 2023

Many of these exercises are adopted from the textbook or reference books. You are suggested to work out more from these or relevant books.

Compulsory Part

1. A nontrivial abelian group A (written multiplicatively) is called divisible if for each element $a \in A$ and each nonzero integer k there is an element $x \in A$ such that $x^{k}=a$, i.e. each element has a $k^{\text {th }}$ root in A.
(a) Prove that the additive group of rational numbers, \mathbb{Q}, is divisible.
(b) Prove that no finite abelian group is divisible.
2. Let p be a prime and \mathbb{F}_{p} be the finite field with p elements. Compute the orders of the groups $G L_{n}\left(\mathbb{F}_{p}\right)$ and $S L_{n}\left(\mathbb{F}_{p}\right)$.
3. Let G be a group of order $p q$, where p and q are primes. Show that every proper subgroup of G is cyclic.
4. Let $H_{1} \leq H_{2} \leq H_{3} \ldots$ be an ascending chain of subgroups of a group G. Prove that the union $\cup_{i=1}^{\infty} H_{i}$ is a subgroup of G.
5. Let $H \leq K \leq G$. Show that $[G: H]=[G: K][K: H]$. (Warning: G, H and K may not be finite.)
6. Show that if H is a subgroup of index 2 in a group G, then $a H=H a$ (as subsets in G) for all $a \in G$. (Warning: Again, G may not be finite.)
7. Show that if a group G with identity e has finite order n, then $a^{n}=e$ for all $a \in G$.
8. Show that any group homomorphism $\phi: G \rightarrow G^{\prime}$, where $|G|$ is a prime number, must either be the trivial homomorphism or an injective map.

Optional Part

1. Recall that an element a of a group G with identity element e has order $r>0$ if $a^{r}=e$ and no smaller positive power of a is the identity. Show that if G is a finite group with identity e and with an even number of elements, then there exists an order 2 element in G, i.e. there exists $a \neq e$ in G such that $a^{2}=e$.
2. Using the Theorem of Lagrange, show that if n is odd, then an abelian group of order $2 n$ contains precisely one element of order 2.
3. Show that every group G with identity e and such that $x^{2}=e$ for all $x \in G$ is abelian.
4. Prove that a cyclic group with only one generator can have at most 2 elements.
5. Show that a group with no proper nontrivial subgroups is cyclic.
6. Show that a group which has only a finite number of subgroups must be a finite group.
7. Let G be a group and suppose that an element $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Show that $a x=x a$ for all $x \in G$. [Hint: Consider $\left(x a x^{-1}\right)^{2}$.]
8. Let n be an integer greater than or equal to 3. Show that the only element σ of S_{n} satisfying $\sigma g=g \sigma$ for all $g \in S_{n}$ is $\sigma=\iota$, the identity permutation. [Hint: First show that S_{n} is a nonabelian group for $n \geq 3$.]
9. Prove the following statements about S_{n} for $n \geq 3$:
(a) Every permutation in S_{n} can be written as a product of at most $n-1$ transpositions.
(b) Every permutation in S_{n} that is not a cycle can be written as a product of at most $n-2$ transpositions.
(c) Every odd permutation in S_{n} can be written as a product of $2 n+3$ transpositions, and every even permutation as a product of $2 n+8$ transpositions.
10. Show that if $\sigma \in S_{n}$ is a cycle of odd length, then σ^{2} is a cycle.
11. If n is odd and $n \geq 3$, show that the identity is the only element of D_{n} which commutes with all elements of D_{n}.
12. Consider the group S_{8}.
(a) What is the order of the cycle $(1,4,5,7)$?
(b) State a theorem suggested by part (a).
(c) What is the order of $\sigma=(4,5)(2,3,7)$? of $\tau=(1,4)(3,5,7,8)$?
(d) Find the order of each of the permutations given in Exercise 13 (a) through (c) (see below) by looking at its decomposition into a product of disjoint cycles.
(e) State a theorem suggested by parts (c) and (d). [Hint: The important words you are looking for are least common multiple.]
13. Express the permutation of $\{1,2,3,4,5,6,7,8\}$ as a product of disjoint cycles, and then as a product of transpositions:
(a) $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1\end{array}\right)$
(b) $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7\end{array}\right)$
(c) $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6\end{array}\right)$
14. Find the maximum possible order for an element of S_{6}.
15. Find the maximum possible order for an element of S_{10}.
16. Complete the following with a condition involving n and r so that the resulting statement is a theorem:

If σ is a cycle of length n, then σ^{r} is also a cycle if and only if...
17. Show that S_{n} is generated by $\{(1,2),(1,2,3, \ldots, n)\}$.
[Hint: Show that as r varies, $(1,2,3, \ldots, n)^{r}(1,2)(1,2,3, \ldots, n)^{n-r}$ gives all the transpositions $(1,2),(2,3),(3,4), \cdots,(n-1, n),(n, 1)$. Then show that any transposition is a product of some of these transpositions and use Corollary 9.12.]
18. Prove that $\mathbb{Q} \times \mathbb{Q}$ is not cyclic.
19. Exhibit a proper subgroup of \mathbb{Q} which is not cyclic.
20. Let H and K be subgroups of a group G. Define a relation \sim on G by $a \sim b$ if and only if $a=h b k$ for some $h \in H$ and some $k \in K$.
(a) Prove that \sim is an equivalence relation on G.
(b) Describe the elements in the equivalence class containing $a \in G$. (These equivalence classes are called double cosets.)
21. Let H and K be subgroups of finite index in a group G, and suppose that $[G: H]=m$ and $[G: K]=n$. Prove that $\operatorname{lcm}(m, n) \leq[G: H \cap K] \leq m n$. Hence deduce that if m and n are relatively prime, then $[G: H \cap K]=[G: H][G: K]$.
22. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism with kernel H and let $a \in G$. Prove the set equality $\{x \in G: \phi(x)=\phi(a)\}=H a$.
23. Show that a nontrivial group which has no proper nontrivial subgroups must be finite and of prime order.
24. If A and B are groups, then their Cartesian product $A \times B$ is a group (called the direct product of A and B) using the componentwise defined operation. Is any subgroup of $A \times B$ of the form $C \times D$ where $C<A$ and $D<B$? Justify your assertion.
25. Prove, carefully and rigorously, that a finite cyclic group of order n has exactly one subgroup of each order d dividing n.
26. The sign of an even permutation is +1 and the sign of an odd permutation is -1 . Observe that the map $\operatorname{sgn}_{n}: S_{n} \rightarrow\{1,-1\}$ defined by

$$
\operatorname{sgn}_{n}(\sigma)=\operatorname{sign} \text { of } \sigma
$$

is a homomorphism of S_{n} onto the multiplicative group $\{1,-1\}$. What is the kernel?
27. Let $\phi: G_{1} \rightarrow G_{2}$ be a group homomorphism. Show that ϕ induces an order preserving one-to-one correspondence between the set of all subgroups of G_{1} that contain $\operatorname{ker} \phi$ and the set of all subgroups of G_{2} that are contained in $\operatorname{im} \phi$.
28. Let G be a group, let $h, k \in G$ and let $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow G$ be defined by $\phi(m, n)=h^{m} k^{n}$. Give a necessary and sufficient condition, involving h and k, for ϕ to be a homomorphism. Prove your assertion.
29. Find a necessary and sufficient condition on G such that the map ϕ described in the preceding exercise is a homomorphism for all choices of $h, k \in G$.
30. Let G be a group, h be an element of G, and n be a positive integer. Let $\phi: \mathbb{Z}_{n} \rightarrow G$ be defined by $\phi(i)=h^{i}$ for $0 \leq i<n$. Give a necessary and sufficient condition (in terms of h and n) for ϕ to be a homomorphism. Prove your assertion.

