THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 Honours Algebraic Structures 2023-24 Tutorial 7 Solutions 11th March 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. (a) We have $\sigma = (1537624)$ and $\tau = (1426735)$.
 - (b) Both σ and τ are 7-cycles so they have order 7.
 - (c) One can easily check that $\sigma \circ \tau(k) = k$ holds for all $k \in \{1, 2, ..., 7\}$, therefore $\sigma \circ \tau = id$.
 - (d) From (c), we have $\tau = \sigma^{-1}$, so $\langle \sigma, \tau \rangle = \langle \sigma \rangle = \{ id, \sigma, \sigma^2, ..., \sigma^6 \}$. This is not a normal subgroup, for example $(12)\sigma(12) = (2537614) \neq \sigma$.
- 2. Note that $\psi : G \to H/K$ is the composition of $\varphi : G \to H$ with $\pi : H \to H/K$ where π is the canonical projection defined by $\pi(h) = hK \in H/K$. Indeed, $\pi \circ \varphi(g) = \pi(\varphi(g)) = \varphi(g)K = \psi(g)$. Therefore ψ is a group homomorphism. The surjectivity of ψ then follows from the surjectivity of both φ and π . Alternatively, one can simply note that for any $hK \in H/K$, we may find some $g \in G$ so that $\varphi(g) = h$, so that $\psi(g) = \varphi(g)K = hK$.

Now it suffices to show that ker $\psi = \varphi^{-1}(K)$. Indeed,

$$g \in \ker \psi \iff \psi(g) = K \in H/K$$
$$\iff \varphi(g)K = K$$
$$\iff \varphi(g) \in K$$
$$\iff g \in \varphi^{-1}(K).$$

Hence, by the first isomorphism theorem, we get $G/\varphi^{-1}(K) \cong H/K$.

- 3. (a) Let d = |(x,y)|, note that (x,y)^d = (e_H, e_K), so that x^d = e_H and y^d = e_K, in particular, m = |x| divides d and n = |y| divides d, so that lcm(m, n) also divides d. On the other hand, lcm(m, n) is by definition a multiple of m and n, so (x, y)^{lcm(m,n)} = (x^{lcm(m,n)}, y^{lcm(m,n)}) = (e_H, e_K). Thus the order d must divide lcm(m, n). This proves their equality.
 - (b) Note that |D_p| = 2p is a product of two prime numbers, so if D_p ≅ H × K for some non-trivial groups, then |H| = p and |K| = 2; or |H| = 2 and |K| = 2. Without loss of generality, assume the former, then since H, K have prime orders, they are cyclic groups. Let x ∈ H and y ∈ K be generators of their respective groups, then |x| = p and |y| = 2, and by (a), we know that (x, y) has order lcm(p, 2) = 2p. Since D_p has order 2p, the image of (x, y) under the isomorphism D_p ≅ H × K also has order 2p, this would imply that D_p is cyclic, which is a contradiction.
- 4. Note that 600 factorizes as $2^3 \cdot 3^1 \cdot 5^2$. Therefore, by classification theorem, we have to consider partitions of the tuples of integers (3, 1, 2), as follows:

- (i) Partition (3, 1, 2): $\mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_{25} \cong \mathbb{Z}_{600}$.
- (ii) Partition (1+2,1,2): $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_{25} \cong \mathbb{Z}_2 \times \mathbb{Z}_{300}$.
- (iii) Partition (1+1+1,1,2): $(\mathbb{Z}_2)^3 \times \mathbb{Z}_3 \times \mathbb{Z}_{25} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{150}$.
- (iv) Partition (3, 1, 1+1): $\mathbb{Z}_8 \times \mathbb{Z}_3 \times (\mathbb{Z}_5)^2 \cong \mathbb{Z}_5 \times \mathbb{Z}_{120}$.
- (v) Partition (1+2, 1, 1+1): $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times (\mathbb{Z}_5)^2 \cong \mathbb{Z}_{10} \times \mathbb{Z}_{60}$.
- (vi) Partition (1 + 1 + 1, 1, 1 + 1): $(\mathbb{Z}_2)^3 \times \mathbb{Z}_3 \times (\mathbb{Z}_5)^2 \cong \mathbb{Z}_2 \times \mathbb{Z}_{10} \times \mathbb{Z}_{30}$.

Very importantly, remember that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ if and only if gcd(m, n) = 1. So there are many ways to write down the same group, for example (i) can be equivalently expressed as $\mathbb{Z}_{600} \cong \mathbb{Z}_3 \times \mathbb{Z}_{200} \cong \mathbb{Z}_8 \times \mathbb{Z}_{75} \cong \mathbb{Z}_{24} \times \mathbb{Z}_{25} \cong \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_{25}$.

5. Consider the sum $\sum_{g \in G} \varphi(g) \in \mathbb{C}$, since φ is a nontrivial homomorphism, there exists some $h \in G$ so that $\varphi(h) \neq 1$, then we have

$$\varphi(h)\sum_{g\in G}\varphi(g)=\sum_{g\in G}\varphi(h)\varphi(g)=\sum_{g\in G}\varphi(hg)=\sum_{hg=g'\in G}\varphi(g').$$

If we write $x = \sum_{g \in G} \varphi(g)$, the above equality reads $\varphi(h)x = x$. Since $\varphi(h) \neq 1$, we must have x = 0.

6. For any $h \in H, k \in K$ note that $khk^{-1} \in H$ and $hk^{-1}h^{-1} \in K$ by normality, therefore $khk^{-1}h^{-1}$ is in $H \cap K = \{e\}$, so that hk = kh. Now we define $\varphi : H \times K \to G$ by $\varphi(h, k) = hk$. This map is a group homomorphism because

$$\varphi((h_1, k_1) \cdot (h_2, k_2)) = \varphi(h_1 h_2, k_1 k_2) = h_1 h_2 k_1 k_2 = h_1 k_1 h_2 k_2 = \varphi(h_1, k_1) \varphi(h_2, k_2)$$

and

$$\varphi((h,k)^{-1}) = \varphi(h^{-1},k^{-1}) = h^{-1}k^{-1} = k^{-1}h^{-1} = \varphi(h,k)^{-1}.$$

Note that surjectivity of φ is true by assumption, so it remains to check injectivity: let $\varphi(h,k) = hk = e \in G$, then we have $h = k^{-1}$, therefore $h \in H \cap K = \{e\}$, so h = k = e.