THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 7 Solutions
 11th March 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. (a) We have $\sigma=(1537624)$ and $\tau=(1426735)$.
(b) Both σ and τ are 7 -cycles so they have order 7 .
(c) One can easily check that $\sigma \circ \tau(k)=k$ holds for all $k \in\{1,2, \ldots, 7\}$, therefore $\sigma \circ \tau=\mathrm{id}$.
(d) From (c), we have $\tau=\sigma^{-1}$, so $\langle\sigma, \tau\rangle=\langle\sigma\rangle=\left\{\mathrm{id}, \sigma, \sigma^{2}, \ldots, \sigma^{6}\right\}$. This is not a normal subgroup, for example (12) $\sigma(12)=(2537614) \neq \sigma$.
2. Note that $\psi: G \rightarrow H / K$ is the composition of $\varphi: G \rightarrow H$ with $\pi: H \rightarrow H / K$ where π is the canonical projection defined by $\pi(h)=h K \in H / K$. Indeed, $\pi \circ \varphi(g)=$ $\pi(\varphi(g))=\varphi(g) K=\psi(g)$. Therefore ψ is a group homomorphism. The surjectivity of ψ then follows from the surjectivity of both φ and π. Alternatively, one can simply note that for any $h K \in H / K$, we may find some $g \in G$ so that $\varphi(g)=h$, so that $\psi(g)=\varphi(g) K=h K$.

Now it suffices to show that $\operatorname{ker} \psi=\varphi^{-1}(K)$. Indeed,

$$
\begin{aligned}
g \in \operatorname{ker} \psi & \Longleftrightarrow \psi(g)=K \in H / K \\
& \Longleftrightarrow \varphi(g) K=K \\
& \Longleftrightarrow \varphi(g) \in K \\
& \Longleftrightarrow g \in \varphi^{-1}(K) .
\end{aligned}
$$

Hence, by the first isomorphism theorem, we get $G / \varphi^{-1}(K) \cong H / K$.
3. (a) Let $d=|(x, y)|$, note that $(x, y)^{d}=\left(e_{H}, e_{K}\right)$, so that $x^{d}=e_{H}$ and $y^{d}=e_{K}$, in particular, $m=|x|$ divides d and $n=|y|$ divides d, so that $\operatorname{lcm}(m, n)$ also divides d. On the other hand, $\operatorname{lcm}(m, n)$ is by definition a multiple of m and n, so $(x, y)^{\operatorname{lcm}(m, n)}=\left(x^{\operatorname{lcm}(m, n)}, y^{\operatorname{lcm}(m, n)}\right)=\left(e_{H}, e_{K}\right)$. Thus the order d must divide $\operatorname{lcm}(m, n)$. This proves their equality.
(b) Note that $\left|D_{p}\right|=2 p$ is a product of two prime numbers, so if $D_{p} \cong H \times K$ for some non-trivial groups, then $|H|=p$ and $|K|=2$; or $|H|=2$ and $|K|=2$. Without loss of generality, assume the former, then since H, K have prime orders, they are cyclic groups. Let $x \in H$ and $y \in K$ be generators of their respective groups, then $|x|=p$ and $|y|=2$, and by (a), we know that (x, y) has order $\operatorname{lcm}(p, 2)=2 p$. Since D_{p} has order $2 p$, the image of (x, y) under the isomorphism $D_{p} \cong H \times K$ also has order $2 p$, this would imply that D_{p} is cyclic, which is a contradiction.
4. Note that 600 factorizes as $2^{3} \cdot 3^{1} \cdot 5^{2}$. Therefore, by classification theorem, we have to consider partitions of the tuples of integers ($3,1,2$), as follows:
(i) Partition $(3,1,2): \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{25} \cong \mathbb{Z}_{600}$.
(ii) Partition $(1+2,1,2)$: $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{25} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{300}$.
(iii) Partition $(1+1+1,1,2)$: $\left(\mathbb{Z}_{2}\right)^{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{25} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{150}$.
(iv) Partition $(3,1,1+1)$: $\mathbb{Z}_{8} \times \mathbb{Z}_{3} \times\left(\mathbb{Z}_{5}\right)^{2} \cong \mathbb{Z}_{5} \times \mathbb{Z}_{120}$.
(v) Partition $(1+2,1,1+1)$: $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times\left(\mathbb{Z}_{5}\right)^{2} \cong \mathbb{Z}_{10} \times \mathbb{Z}_{60}$.
(vi) Partition $(1+1+1,1,1+1):\left(\mathbb{Z}_{2}\right)^{3} \times \mathbb{Z}_{3} \times\left(\mathbb{Z}_{5}\right)^{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{10} \times \mathbb{Z}_{30}$.

Very importantly, remember that $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ if and only if $\operatorname{gcd}(m, n)=1$. So there are many ways to write down the same group, for example (i) can be equivalently expressed as $\mathbb{Z}_{600} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{200} \cong \mathbb{Z}_{8} \times \mathbb{Z}_{75} \cong \mathbb{Z}_{24} \times \mathbb{Z}_{25} \cong \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{25}$.
5. Consider the sum $\sum_{g \in G} \varphi(g) \in \mathbb{C}$, since φ is a nontrivial homomorphism, there exists some $h \in G$ so that $\varphi(h) \neq 1$, then we have

$$
\varphi(h) \sum_{g \in G} \varphi(g)=\sum_{g \in G} \varphi(h) \varphi(g)=\sum_{g \in G} \varphi(h g)=\sum_{h g=g^{\prime} \in G} \varphi\left(g^{\prime}\right) .
$$

If we write $x=\sum_{g \in G} \varphi(g)$, the above equality reads $\varphi(h) x=x$. Since $\varphi(h) \neq 1$, we must have $x=0$.
6. For any $h \in H, k \in K$ note that $k h k^{-1} \in H$ and $h k^{-1} h^{-1} \in K$ by normality, therefore $k h k^{-1} h^{-1}$ is in $H \cap K=\{e\}$, so that $h k=k h$. Now we define $\varphi: H \times K \rightarrow G$ by $\varphi(h, k)=h k$. This map is a group homomorphism because

$$
\varphi\left(\left(h_{1}, k_{1}\right) \cdot\left(h_{2}, k_{2}\right)\right)=\varphi\left(h_{1} h_{2}, k_{1} k_{2}\right)=h_{1} h_{2} k_{1} k_{2}=h_{1} k_{1} h_{2} k_{2}=\varphi\left(h_{1}, k_{1}\right) \varphi\left(h_{2}, k_{2}\right)
$$

and

$$
\varphi\left((h, k)^{-1}\right)=\varphi\left(h^{-1}, k^{-1}\right)=h^{-1} k^{-1}=k^{-1} h^{-1}=\varphi(h, k)^{-1} .
$$

Note that surjectivity of φ is true by assumption, so it remains to check injectivity: let $\varphi(h, k)=h k=e \in G$, then we have $h=k^{-1}$, therefore $h \in H \cap K=\{e\}$, so $h=k=e$.

