THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 7 Problems (Revision Exercise)
 11th March 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. Consider the following elements in S_{7}.

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 4 & 7 & 1 & 3 & 2 & 6
\end{array}\right), \quad \tau=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 5 & 2 & 1 & 7 & 3
\end{array}\right) .
$$

(a) Express σ and τ as a product of disjoint (commuting) cycles.
(b) Determine the order of σ and τ in S_{7}.
(c) Find $\sigma \circ \tau$.
(d) Determine the subgroup $\langle\sigma, \tau\rangle \leq S_{7}$ explicitly by listing all the elements in this subgroup. Is this subgroup normal in S_{7} ?
2. Let $\varphi: G \rightarrow H$ be a surjective group homomorphism, and $K \unlhd H$, prove that $G / \varphi^{-1}(K) \cong$ H / K by considering the map $\psi: G \rightarrow H / K$ defined by $\psi(g)=\varphi(g) K \in H / K$.
3. (a) Let H, K be groups, suppose that $x \in H, y \in K$ are of orders m and n respectively, show that the element $(x, y) \in H \times K$ has order $\operatorname{lcm}(m, n)$.
(b) Let p be an odd prime number, consider D_{p} the p-th dihedral group, using part (a) or otherwise, prove that D_{p} is not isomorphic to a product of two nontrivial groups.
4. List all abelian groups of order 600 .
5. Let G be a finite group, and $\varphi: G \rightarrow \mathbb{C}^{\times}$be a nontrivial group homomorphism, prove that $\sum_{g \in G} \varphi(g)=0$.
6. Let G be a group, $H, K \unlhd G$ be normal subgroups such that $H \cap K=\{e\}$. Suppose that any $g \in G$ can be expressed as a product $g=h k$ where $h \in H, k \in K$, prove that $G \cong H \times K$. (Hint: first show that $h k=k h$ for any elements $h \in H, k \in K$.)

