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1. By the first isomorphism theorem, it suffices to find a group homomorphism φ : R → U
such that kerφ = 2πZ. Consider φ(t) = eit, then φ is a group homomorphism from R to
U , since |eit| = 1 and φ(t + (−s)) = ei(t−s) = eit · (eis)−1. The kernel kerφ is given by
2πZ since eit = cos t+ i sin t = 1 if and only if t = 2πk for some k ∈ Z.

2. If φ : G → G′ is a surjective homomorphism, and if G is cyclic, then G = ⟨g⟩ for some
g ∈ G. By surjectivity, for any x ∈ G′ there exists some h ∈ G so that φ(h) = x. For
this h, there exists some k ∈ Z so that gk = h, therefore x = φ(h) = φ(gk) = φ(g)k.
Hence every element x ∈ G′ is some power of φ(g), in other words, G′ = ⟨φ(g)⟩.
Now assume that G is abelian. For any g′, h′ ∈ G′, there exists some g, h ∈ G such that
φ(g) = g′ and φ(h) = h′. Therefore g′h′ = φ(g)φ(h) = φ(gh) = φ(hg) = φ(h)φ(g) =
h′g′, and so G′ is abelian.

3. (a) For any g ∈ G, we define φ : Z → G by φ(n) = gn. This is a group homomorphism
because φ(n + (−m)) = gn−m = gn · g−m = φ(n)φ(m)−1 for any n,m ∈ Z (see
HW1 compulsory Q3c). This is a group homomorphism that satisfies φ(1) = g.

(b) Let φ : Dn → G be a homomorphism, since we have rn = s2 = rsrs = e
in Dn, applying the homomorphism to these relations yields φ(r)n = φ(s)2 =
(φ(r)φ(s))2 = eG.

Remark: More generally, one can ask the question of how do we determine the set of
homomorphism from G to G′. The above exercise hinted on a condition of when can one
construct a homomorphism. If φ : G → G′ is a homomorphism, and G is a group that is
generated by some elements G = ⟨g1, ..., gn⟩, then whatever relations that the gi’s satisfy
in G, their images φ(g1), ..., φ(gn) have to satisfy as well. If one has a ”complete” set
of relations for the generators for the gi’s, then the data of a homomorphism is nothing
but choosing what the targets φ(gi) are, providing they satisfy the same relations! This
is particularly helpful, because it can reduce the computations of many different group
operations to that of the ones involving the generators.

4. If two groups are isomorphic, then all the group properties are preserved. For example, Z
is cyclic, so if we can show that Q is not cyclic, then Q ̸∼= Z. The group Q is not cyclic,
because if Q = ⟨g⟩, then 1 = kg = g + g + ... + g, so g = 1

k
. Then this would imply

1
2k

̸∈ Q, clearly a contradiction.

On the other hand, Q is not isomorphic to R for completely different reason. The two
group has different cardinality, since an isomorphism is in particular a bijection between
the underlying sets, it is impossible for them to be isomorphic.



5. Firstly, φ is well-defined because φg : G → G is a bijective function (i.e. a permutation
on the set G). The reason is simply due to φg has an inverse function, given by φg−1 .
Indeed, φg ◦ φg−1(x) = g(g−1x) = x and φg−1 ◦ φg = g−1(gx) = x. In particular, this
means that φ(g)−1 = φ−1

g = φg−1 = φ(g−1). Next, we also have to show φ preserves
products, this is due to φ(gh)(x) = φgh(x) = (gh)x = g(hx) = φg(φh(x)) = φg◦φh(x).
So we have φ(gh) = φ(g) ◦ φ(h).
Finally, to show that φ is an injective homomorphism, it suffices to show that kerφ = {e}.
This is because φg = id implies that φg(e) = g ·e = g = e = id(e), so g = e. Conversely,
if g = e, we have φe(x) = e · x = id(x).

6. (a) Let φ : G → Sym(X) be defined in the question, then an element g ∈ kerφ fixes
all left H cosets. In particular, this means that φg(H) = gH = id(H), which is
equivalent to g ∈ H . Therefore, kerφ ≤ H , in general the two groups may not be
the same.

(b) Since there are [G : H] = n left H cosets, so |X| = n and the group Sym(X)
has order n!. By the first isomorphism theorem, G/ kerφ ∼= Im(φ) ≤ Sym(G).
Therefore [G : kerφ] = |G/ kerφ| = |Im(φ)| ≤ n!, so kerφ is a normal subgroup
of G with index at most n!.

(c) Suppose now that G is an infinite group with an index n subgroup, then by part (b)
there exists a normal subgroup of index at most n!, therefore it must be a nontrivial
normal subgroup of G.

7. Define ψ : G → Inn(G) by ψ(g) = ψg : G → G defined by ψg(x) = gxg−1. This
defines a homomorphism because ψg ◦ ψh(x) = g(hxh−1)g−1 = (gh)x(gh)−1 = ψgh(x)
for any g, h, x ∈ G, and ψg ◦ ψg−1(x) = ψe(x) = id(x). By definition of Inn(G),
ψ is surjective. Therefore, it suffices to show that kerψ = Z(G) to conclude by first
isomorphism theorem that G/Z(G) ∼= Inn(G).

Indeed, ψg = id exactly when gxg−1 = x for all x. This by definition is equivalent to
g ∈ Z(G).

8. Recall that by Q3a, a homomorphism φ : Z → Z is uniquely determined by φ(1) = n ∈
Z. Note that the image in this case Im(φ) = ⟨n⟩ = nZ. If φ is an isomorphism, the image
is the whole Z, so n has to be a generator of Z. So the only choices are n = ±1. It is clear
that φ(1) = −1 defines an automorphism, since it is its own inverse. So Aut(Z) = Z2.

Remark: φ(1) = −1 defines an automorphism that is not inner. In an abelian group, any
inner automorphism is trivial, since every element commutes with each other.

9. The question should instead read: there does not exist non-trivial homomorphism Zm →
Zn.

Assume on the contrary that there is some homomorphism φ : Zm → Zn, then φ(1) ∈ Zn

satisfies φ(n) = φ(1)n = 0 ∈ Zn. Since gcd(m,n) = 1, there exists integers a, b so
that am + bn = 1. Then φ(1) = φ(am + bn) = φ(bn) = φ(n + n + ... + n) =
φ(n) + ... + φ(n) = 0. Therefore the only homomorphism from Zm → Zn is the zero
homomorphism, sending every element to 0.


