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in person during office hours.

. By the first isomorphism theorem, it suffices to find a group homomorphism ¢ : R — U
such that ker ¢ = 27Z. Consider p(t) = €', then ¢ is a group homomorphism from R to
U, since |¢"| = 1 and p(t + (—s)) = €!lt=%) = ¢* . (¢*¥)~1. The kernel ker ¢ is given by
277 since € = cost +isint = 1 if and only if ¢ = 27k for some k € Z.

2. If p : G — G’ is a surjective homomorphism, and if G is cyclic, then G = (g) for some
g € G. By surjectivity, for any z € G’ there exists some h € G so that ¢(h) = x. For
this h, there exists some k € Z so that g* = h, therefore x = ¢(h) = ¢(¢*) = »(g)F.
Hence every element = € G’ is some power of ((g), in other words, G’ = (¢(g)).

Now assume that G is abelian. For any ¢', A’ € G, there exists some g, h € G such that

¢(g) = g" and p(h) = h'. Therefore g'h' = ¢(g)p(h) = @(gh) = ¢(hg) = ¢(h)e(g) =
h'g', and so G’ is abelian.

3. (a) Forany g € GG, we define ¢ : Z — G by ¢(n) = ¢". This is a group homomorphism
because p(n + (—m)) = g"™ = g" - g7™ = p(n)p(m)~! for any n,m € Z (see
HW1 compulsory Q3c). This is a group homomorphism that satisfies ¢(1) = g.

(b) Let ¢ : D, — G be a homomorphism, since we have 1" = s? = rsrs

in D, applying the homomorphism to these relations yields ¢(r)" = ¢(s)

(e(r)e(s))® = ec-
Remark: More generally, one can ask the question of how do we determine the set of
homomorphism from G to G’. The above exercise hinted on a condition of when can one
construct a homomorphism. If ¢ : G — G’ is a homomorphism, and G is a group that is
generated by some elements G = (gy, ..., g,), then whatever relations that the g;’s satisfy
in G, their images ¢(g1), ..., v(gn) have to satisfy as well. If one has a “complete” set
of relations for the generators for the g;’s, then the data of a homomorphism is nothing
but choosing what the targets (g;) are, providing they satisfy the same relations! This
is particularly helpful, because it can reduce the computations of many different group
operations to that of the ones involving the generators.
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4. If two groups are isomorphic, then all the group properties are preserved. For example, Z
is cyclic, so if we can show that QQ is not cyclic, then Q 2 Z. The group Q is not cyclic,
because if Q = (g), then 1 = kg = g+ g+ ... + g, so g = 1. Then this would imply
i ¢ Q, clearly a contradiction.

On the other hand, Q is not isomorphic to R for completely different reason. The two
group has different cardinality, since an isomorphism is in particular a bijection between
the underlying sets, it is impossible for them to be isomorphic.



5. Firstly, ¢ is well-defined because ¢, : G — G is a bijective function (i.e. a permutation
on the set ;). The reason is simply due to ¢, has an inverse function, given by ¢ 1.
Indeed, ¢, 0 p,-1(z) = g(g~'z) = x and ¢,-1 0 ¢, = g '(gx) = z. In particular, this
means that ¢(g)™" = ¢, = @1 = p(g7"). Next, we also have to show ¢ preserves
products, this is due to ¢ (gh)(z) = pu(z) = (gh)x = g(hx) = @4(en(z)) = @gopn(z).
So we have ¢(gh) = ¢(g) o p(h).

Finally, to show that ¢ is an injective homomorphism, it suffices to show that ker o = {e}.
This is because ¢, = id implies that ¢ (e) = g-e = g = e = id(e), so g = e. Conversely,
if g = e, we have . (x) = e -z = id(x).

6. (a) Let ¢ : G — Sym(X) be defined in the question, then an element g € ker ¢ fixes
all left H cosets. In particular, this means that ¢,(H) = gH = id(H), which is
equivalent to g € H. Therefore, ker ¢ < H, in general the two groups may not be
the same.

(b) Since there are [G : H|] = n left H cosets, so |X| = n and the group Sym(X)
has order n!. By the first isomorphism theorem, G/ker ¢ = Im(p) < Sym(G).
Therefore [G : ker ¢] = |G/ ker p| = [Im(¢)| < n!, so ker ¢ is a normal subgroup
of G with index at most n!.

(c) Suppose now that GG is an infinite group with an index n subgroup, then by part (b)
there exists a normal subgroup of index at most n!, therefore it must be a nontrivial
normal subgroup of G.

7. Define ¢ : G — Inn(G) by ¥(g9) = ¢, : G — G defined by ¢,(z) = gxg~'. This
defines a homomorphism because ¢, o ¢, (z) = g(hzh™)g™ = (gh)z(gh)™" = Y ()
for any g,h,x € G, and ¢, 0 Yy-1(x) = t(x) = id(x). By definition of Inn(G),
1 is surjective. Therefore, it suffices to show that ker¢) = Z(G) to conclude by first
isomorphism theorem that G/Z(G) = Inn(G).

Indeed, v, = id exactly when gxg™!

g€ Z(Q).

= z for all z. This by definition is equivalent to

8. Recall that by Q3a, a homomorphism ¢ : Z — Z is uniquely determined by ¢(1) = n €
Z. Note that the image in this case Im(y) = (n) = nZ. If  is an isomorphism, the image
is the whole Z, so n has to be a generator of Z. So the only choices are n = +1. Itis clear
that (1) = —1 defines an automorphism, since it is its own inverse. So Aut(Z) = Zo.

Remark: p(1) = —1 defines an automorphism that is not inner. In an abelian group, any
inner automorphism is trivial, since every element commutes with each other.

9. The question should instead read: there does not exist non-trivial homomorphism Z,,, —
L,

Assume on the contrary that there is some homomorphism ¢ : Z,, — Z,, then (1) € Z,
satisfies p(n) = ¢(1)" = 0 € Z,. Since gcd(m,n) = 1, there exists integers a, b so
that am + bn = 1. Then p(1) = p(am + bn) = p(bn) = p(n+n+ ... +n) =
©(n) + ... + p(n) = 0. Therefore the only homomorphism from Z,, — Z, is the zero
homomorphism, sending every element to 0.



