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1. (a) =⇒ (b) holds by definition.

(b) =⇒ (c) is true because aH ⊂ Ha ⇐⇒ for all h ∈ H there exists h′ ∈ H such that
ah = h′a ⇐⇒ for all h ∈ H there exists h′ ∈ H so that aha−1 = h′ ⇐⇒ aHa−1 ⊂ H .

(c) =⇒ (d): Let x ∈ H be any element, then axa−1 ∈ H for arbitrary a ∈ G, so that
Cx = {axa−1 : a ∈ G} ⊂ H . This implies that

⋃
x∈H Cx ⊂ H , on the other hand

H ⊂
⋃

x∈H Cx since any x ∈ H would have x ∈ Cx.

(d) =⇒ (a) : Let H be a union of conjugacy classes, say H =
⋃

x∈I Cx. Since conju-
gacy classes are equivalence classes coming from the equivalence relation x ∼ axa−1.
This implies that H is in fact a disjoint union. Then consider an element ah ∈ aH =⊔

x∈I aCx, then h ∈ Cx for some x ∈ I . By definition, we have aha−1 ∈ Cx, therefore
aha−1a = ah ∈ Cxa ⊂

⋃
x∈I Cxa = Ha. So we have shown that aH ⊂ Ha. The other

direction is similar.

(e) =⇒ (a) is true by corollary from lecture notes.

(a) =⇒ (e) : If H ⊴ G, then the canonical projection π : G → G/H defined by a 7→ aH
is a well-defined group homomorphism, with kerπ = H . (See 6.2 of lecture notes.)

2. (a) For any a ∈ G, a{e} = {a} = {e}a, so {e} is normal. As for a ∈ G, we have
aG = G = Ga for any a ∈ G since multiplication on the left and on the right define
bijection functions from G to itself.

(b) The simplest way is to consider aZ(G)a−1 = {axa−1 : x ∈ Z(G)} = {x : x ∈
Z(G)} = Z(G) for any a ∈ G. Therefore criterion (c) of Q1, Z(G) is normal.
It is also possible to prove it using the criterion (e) of Q1. We will need to construct
a homomorphism φ : G → G′ such that kerφ = Z(G). The idea is to use a natural
conjugate ”action” of G. For each g ∈ G, we may define a function φg : G → G by
φg(x) = gxg−1. This is a bijective function since its inverse can be easily seen to be
φ−1
g = φg−1 , as φg−1 ◦ φg(x) = g−1gxg−1g = x, and φg ◦ φg−1(x) = gg−1xgg−1 =

x. The functions φg also satisfies that φgh(x) = ghx(gh)−1 = ghxh−1g−1 =
φg ◦ φh(x). These properties implies that the map φ : G → Sym(G) defined by
g 7→ φg is a group homomorphism, where Sym(G) is the symmetric group on the
underlying set of G (i.e. the group of bijection function from G to G, equipped with
function composition.)
We claim that Z(G) = kerφ. Indeed, g ∈ Z(G) ⇐⇒ gxg−1 = x for any x ∈ G
⇐⇒ φg(x) = id(x) for any x ∈ G ⇐⇒ φg = id ⇐⇒ g ∈ kerφ. Thus Z(G) is
normal.



(c) Recall that [G : H] is defined as the number (cardinality) of left cosets of H in G.
First, we shall prove that the number of left cosets is the same as the number or right
cosets. Let L and R be the set of left and right cosets of H in G respectively, we
define a function f : L → R by f(aH) = Ha−1. We claim that this is a well-
defined bijective function, thus showing that |L| = |R|. If a and a′ represent the
same left cosets, i.e. aH = a′H , then there exists some h ∈ H so that a′ = ah, then
f(a′H) = Ha′−1 = Hh−1a−1 = Ha−1 = f(aH), so that f is well-defined. It is
injective because

f(aH) = f(a′H) ⇐⇒ Ha−1 = Ha′−1

⇐⇒ there exists someh ∈ H so that a′−1 = ha−1

⇐⇒ there exists some h̃ so that a′ = ah̃

⇐⇒ aH = a′H.

And it is surjective since for any right coset Hb ∈ R, f(b−1H) = Hb. Thus f is
bijective and |L| = |R|.
In our case, that means that there are precisely two left cosets and two right cosets
of H in G. Since cosets define a partition of G, that means that if a ̸∈ H , then
aH ̸= H and Ha ̸= H , so that aH and Ha must both be the complement of H ,
G \H , in particular they are equal. And if a ∈ H , then aH = H = Ha. Therefore
we have proven that H is normal.

(d) If {Hi}i∈I are normal subgroups, then for any a ∈ G, we have aHi = Hia. Now for⋂
i∈I Hi, note that for any a ∈ G,

a
⋂
i∈I

Hi := {ah : h ∈ Hi for all i ∈ I} =
⋂
i∈I

aHi =
⋂
i∈I

Hia =

(⋂
i∈I

Hi

)
a.

So
⋂

i∈I Hi is normal.
We can also prove the normality by constructing a homomorphism. Recall that
since Hi are normal, we have canonical projections πi : G → G/Hi defined by
πi(a) = aHi such that kerπi = Hi. Consider π : G →

∏
i∈I G/Hi defined by

π(a) = (πi(a))i∈I = (aHi)i∈I . We claim that kerπ =
⋂

i∈I Hi. Indeed, a ∈ kerπ
precisely when π(a) = e ∈

∏
i∈I G/Hi, but the identity e in the product is just the

product of identities, so that πi(a) = ei ∈ G/Hi for all i ∈ I . This happens exactly
when a ∈ kerπi for all i ∈ I , i.e. a ∈

⋂
i∈I kerπi =

⋂
i∈I Hi.

(e) If K ≤ H ≤ G and K ⊴ G, then for all a ∈ G, aK = Ka. In particular, for any
a ∈ H ≤ G, aK = Ka, so K is also normal in H .
We can also prove it using kernel. Since K ⊴ G, we have π : G → G/K with
kerπ = K. Clearly, the restriction π|H : H → G/K is still a homomorphism, with
ker(π|H) = K, thus K ⊴ H .

(f) For any a ∈ G1, b ∈ G2, we have (a, b)H × K = aH × bK = Ha × Kb =
H ×K(a, b), so that H ×K is normal.
Alternatively, consider canonical projections π1 : G1 → G1/H and π2 : G2 →
G2/K, we may define π : G1 ×G2 → G1/H ×G2/K by π(a, b) = (π1(a), π2(b)).



Then we have

kerπ = {(a, b) : (π1(a), π2(b)) = (aH, bK) = (H,K) ∈ G1/H ×G2/K}
= {(a, b) : a ∈ H, b ∈ K}
= H ×K.

3. Let G/H be the set of left cosets of H in G and similar for G/K and H/K (we did not
assume normality of H in G etc, here G/H is only a set, not necessarily with a group
structure.) Define a function f : G/K → G/H by f(aK) = aH . This is well-defined
since if aK = a′K then a′ = ak for some k ∈ K, so that a′H = akH = aH as k ∈ H .
We claim that f is surjective, with |f−1(aH)| = [H : K] for any aH ∈ G/H . Thus, we
have

[G : K] = |G/K| =

∣∣∣∣∣∣
⊔

aH∈G/H

f−1(aH)

∣∣∣∣∣∣
=

∑
aH∈G/H

|f−1(aH)|

=
∑

aH∈G/H

[H : K]

= [G : H][H : K].

Now we prove the claim. Clearly f is surjective, since for any aH ∈ G/H , we may take
aK ∈ G/K, then f(aK) = aH by definition. Now fix some aH ∈ G/K and consider
f−1(aH). We have bK ∈ f−1(aH) when f(bK) = bH = aH . This happens precisely
when b = ah for some h ∈ H . Thus, we have

f−1(aH) = {ahK ∈ G/K : h ∈ H}.

Now consider the function s : f−1(aH) → H/K where we send ahK ∈ f−1(aH) to
s(ahK) = hK. This is well-defined because if ahK = ah′K, then ah′ = ahk for some
k ∈ K, so that h′ = hk, which implies that h′K = hK. Note that s is also an injective
function, since hK = s(ahK) = s(ah′K) = h′K precisely when h′ = hk, which implies
ah = ah′k, so that ahK = ah′K. Surjectivity of s follows from the definition directly.
Thus s is a bijection and establishes |f−1(aH)| = |H/K| = [H : K].

The converse is false. Consider Z2 × Z2, then ⟨(1, 1)⟩ is a normal subgroup that is not a
product.

4. If G is a cyclic group, take a ∈ G be a generator. Then any g ∈ G can be written as
g = ak for some k ∈ Z. Now let gH ∈ G/H be any element, then gH = akH = (aH)k

for some k ∈ Z. Thus aH is a generator of G/H and G/H is cyclic.

5. If both H and G/H are cyclic, let a ∈ H and bH ∈ G/H be generators. We claim that
⟨a, b⟩ = G. Let g ∈ G be any element, then g is in the left coset gH , so there exists
some k so that gH = (bH)k = bkH . Therefore, there is some h ∈ H such that g = bkh.
Now H is generated by a, so there is some l so that h = al. Putting these together yields
g = bkh = bkal.


