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* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or

2.

in person during office hours.

. (a) = (b) holds by definition.

(b) = (c) is true because aH C Ha <= for all h € H there exists i’ € H such that
ah = h'a <= for all h € H there exists h' € H so thataha™! = ' <= aHa' C H.

(¢) = (d): Let z € H be any element, then axza™' € H for arbitrary a € G, so that
Cy = {aza™ : a € G} C H. This implies that | J,.,; C. C H, on the other hand
H C U,cpy Cs since any x € H would have z € C,.

(d) = (a) : Let H be a union of conjugacy classes, say H = |J,.; C,. Since conju-
gacy classes are equivalence classes coming from the equivalence relation z ~ axa™'.
This implies that H is in fact a disjoint union. Then consider an element ah € aH =
| |,c; aCs, then h € C, for some x € I. By definition, we have ahat € C,, therefore
aha™'a = ah € Cpa C |J,.; Cra = Ha. So we have shown that aHH C Ha. The other

direction is similar.

zel

(e) = (a) is true by corollary from lecture notes.

(a) = (e) : If H < G, then the canonical projection 7 : G — G/ H defined by a — aH
is a well-defined group homomorphism, with ker 7 = H. (See 6.2 of lecture notes.)

(a) For any a € G, a{e} = {a} = {e}a, so {e} is normal. As for a € G, we have
aG = G = Ga for any a € G since multiplication on the left and on the right define
bijection functions from G to itself.

(b) The simplest way is to consider aZ(G)a™" = {aza™ : z € Z(G)} = {z: z €
Z(G)} = Z(Q) for any a € G. Therefore criterion (c) of Q1, Z(G) is normal.
It is also possible to prove it using the criterion (e) of Q1. We will need to construct
a homomorphism ¢ : G — G’ such that ker ¢ = Z(G). The idea is to use a natural
conjugate “action” of GG. For each g € G, we may define a function ¢, : G — G by
¢q(x) = grg~'. This is a bijective function since its inverse can be easily seen to be
p, ' = pg1.8s g1 0@g(x) = g7 grgT g = x,and gy 0 py1 (x) = gg gyt =
x. The functions ¢, also satisfies that p,,(z) = ghx(gh)™ = ghah™'g™! =
©g © @n(x). These properties implies that the map ¢ : G — Sym(G) defined by
g + ¢, is a group homomorphism, where Sym(G) is the symmetric group on the
underlying set of G (i.e. the group of bijection function from G to GG, equipped with
function composition.)

We claim that Z(G) = ker ¢. Indeed, g € Z(G) <= gxg~' = z forany z € G
<= pg4(x) = id(x) for any z € G <= ¢, = id <= g € kerp. Thus Z(G) is
normal.



(c)

(d)

(e

®

Recall that [G : H] is defined as the number (cardinality) of left cosets of H in G.
First, we shall prove that the number of left cosets is the same as the number or right
cosets. Let L and R be the set of left and right cosets of H in G respectively, we
define a function f : L — R by f(aH) = Ha™!. We claim that this is a well-
defined bijective function, thus showing that |L| = |R|. If a and o’ represent the
same left cosets, i.e. aH = a' H, then there exists some h € H so that a’ = ah, then
f(dH) = Hd ' = Hh'a™' = Ha™' = f(aH), so that f is well-defined. It is
injective because

flaH) = f(d'H) < Ha ' = Ha' ™!

< there exists some h € H so thata’~! = ha™*

< there exists some h so thata’ = ah
< aH =d H.

And it is surjective since for any right coset Hb € R, f(b"*H) = Hb. Thus f is
bijective and |L| = |R)|.

In our case, that means that there are precisely two left cosets and two right cosets
of H in GG. Since cosets define a partition of (G, that means that if a ¢ H, then
aH # H and Ha # H, so that aH and Ha must both be the complement of H,
G\ H, in particular they are equal. And if a € H, then aH = H = Ha. Therefore
we have proven that H is normal.

If { H,};c; are normal subgroups, then for any a € GG, we have aH; = H;a. Now for
(ic; Hi, note that for any a € G,

a( \H;:={ah: h € Hforalli € I} =(\aH; = | Hia = (ﬂH) a.
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So (e Hi is normal.

We can also prove the normality by constructing a homomorphism. Recall that
since H; are normal, we have canonical projections m; : G — G/H; defined by
mi(a) = aH; such that kerm; = H,. Consider m : G — [],.; G/H; defined by
m(a) = (mi(a))icr = (aH;)icr. We claim that ker 7 = (,; H;. Indeed, a € kerm
precisely when 7(a) = e € [[,.; G/H,;, but the identity e in the product is just the
product of identities, so that 7;(a) = e; € G/H, for all i € I. This happens exactly
when a € kerm; foralli € I,ie. a € (., kerm; = (,c; H;.

If K < H<(Gand K <G, then forall a € GG, aK = Ka. In particular, for any
a€ H<G,aK = Ka, so K is also normal in H.

We can also prove it using kernel. Since K < G, we have 7 : G — G/K with
ker m = K. Clearly, the restriction 7|z : H — G/K is still a homomorphism, with
ker(m|y) = K, thus K < H.

For any a € G4, b € Gy, we have (a,b)H x K = aH x bK = Ha x Kb =
H x K(a,b), sothat H x K is normal.

Alternatively, consider canonical projections m : Gy — G1/H and my : Gy —
GQ/K, we may define 7 : G1 X GQ — Gl/H X GQ/K by 7T(a, b) = (71'1(&), 7T2(b))



Then we have

kerm = {(a,b) : (m(a), (b)) = (aH,bK) = (H,K) € G1/H x Gy/K}
={(a,b): a € H,be K}
=Hx K.

3. Let G/H be the set of left cosets of H in G and similar for G/K and H/K (we did not
assume normality of H in G etc, here G/H is only a set, not necessarily with a group
structure.) Define a function f : G/K — G/H by f(aK) = aH. This is well-defined
since if a K = o’ K then o’ = ak forsome k € K,sothat o/ H = akH = aH as k € H.
We claim that f is surjective, with |f~'(aH)| = [H : K] for any aH € G/H. Thus, we
have

G:K]=|G/K|=| || f'(aH)
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Now we prove the claim. Clearly f is surjective, since for any aH € G/H, we may take
aK € G/K, then f(aK) = aH by definition. Now fix some aH € G//K and consider
f~YaH). We have bK € f~'(aH) when f(bK) = bH = aH. This happens precisely
when b = ah for some h € H. Thus, we have

fY(aH) = {ahK € G/K : h € H}.

Now consider the function s : f~'(aH) — H/K where we send ahK € f~'(aH) to
s(ahK) = hK. This is well-defined because if ah /X' = ah' K, then ah’ = ahk for some
k € K, so that h’ = hk, which implies that ' K = hK. Note that s is also an injective
function, since h K = s(ahK) = s(ah’K) = h' K precisely when i’ = hk, which implies
ah = ah'k, so that ah K = ah' K. Surjectivity of s follows from the definition directly.
Thus s is a bijection and establishes | f~!(aH)| = |H/K| = [H : K].

The converse is false. Consider Zy X Zs, then ((1, 1)) is a normal subgroup that is not a
product.

4. If G is a cyclic group, take a € G be a generator. Then any g € G can be written as
g = a” for some k € Z. Now let gH € G/H be any element, then gH = a*H = (aH)*
for some k € Z. Thus aH is a generator of G/H and G/H is cyclic.

5. If both H and G/H are cyclic, let a € H and bH € G/H be generators. We claim that
(a,b) = G. Let g € G be any element, then g is in the left coset gH, so there exists
some k so that gH = (bH)* = b* H. Therefore, there is some h € H such that g = b*h.

Now H is generated by a, so there is some [ so that h = a'. Putting these together yields
g = b"h = bFd'.



