THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 5 Solutions
 19th February 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. $(a) \Longrightarrow(b)$ holds by definition.
$(b) \Longrightarrow(c)$ is true because $a H \subset H a \Longleftrightarrow$ for all $h \in H$ there exists $h^{\prime} \in H$ such that $a h=h^{\prime} a \Longleftrightarrow$ for all $h \in H$ there exists $h^{\prime} \in H$ so that $a h a^{-1}=h^{\prime} \Longleftrightarrow a H a^{-1} \subset H$.
$(c) \Longrightarrow(d):$ Let $x \in H$ be any element, then $a x a^{-1} \in H$ for arbitrary $a \in G$, so that $C_{x}=\left\{a x a^{-1}: a \in G\right\} \subset H$. This implies that $\bigcup_{x \in H} C_{x} \subset H$, on the other hand $H \subset \bigcup_{x \in H} C_{x}$ since any $x \in H$ would have $x \in C_{x}$.
$(d) \Longrightarrow(a)$: Let H be a union of conjugacy classes, say $H=\bigcup_{x \in I} C_{x}$. Since conjugacy classes are equivalence classes coming from the equivalence relation $x \sim a x a^{-1}$. This implies that H is in fact a disjoint union. Then consider an element $a h \in a H=$ $\bigsqcup_{x \in I} a C_{x}$, then $h \in C_{x}$ for some $x \in I$. By definition, we have $a h a^{-1} \in C_{x}$, therefore $a h a^{-1} a=a h \in C_{x} a \subset \bigcup_{x \in I} C_{x} a=H a$. So we have shown that $a H \subset H a$. The other direction is similar.
$(e) \Longrightarrow(a)$ is true by corollary from lecture notes.
$(a) \Longrightarrow(e):$ If $H \unlhd G$, then the canonical projection $\pi: G \rightarrow G / H$ defined by $a \mapsto a H$ is a well-defined group homomorphism, with $\operatorname{ker} \pi=H$. (See 6.2 of lecture notes.)
2. (a) For any $a \in G, a\{e\}=\{a\}=\{e\} a$, so $\{e\}$ is normal. As for $a \in G$, we have $a G=G=G a$ for any $a \in G$ since multiplication on the left and on the right define bijection functions from G to itself.
(b) The simplest way is to consider $a Z(G) a^{-1}=\left\{a x a^{-1}: x \in Z(G)\right\}=\{x: x \in$ $Z(G)\}=Z(G)$ for any $a \in G$. Therefore criterion (c) of $\mathrm{Q} 1, Z(G)$ is normal.
It is also possible to prove it using the criterion (e) of Q 1 . We will need to construct a homomorphism $\varphi: G \rightarrow G^{\prime}$ such that $\operatorname{ker} \varphi=Z(G)$. The idea is to use a natural conjugate "action" of G. For each $g \in G$, we may define a function $\varphi_{g}: G \rightarrow G$ by $\varphi_{g}(x)=g x g^{-1}$. This is a bijective function since its inverse can be easily seen to be $\varphi_{g}^{-1}=\varphi_{g^{-1}}$, as $\varphi_{g^{-1}} \circ \varphi_{g}(x)=g^{-1} g x g^{-1} g=x$, and $\varphi_{g} \circ \varphi_{g^{-1}}(x)=g g^{-1} x g g^{-1}=$ x. The functions φ_{g} also satisfies that $\varphi_{g h}(x)=g h x(g h)^{-1}=g h x h^{-1} g^{-1}=$ $\varphi_{g} \circ \varphi_{h}(x)$. These properties implies that the map $\varphi: G \rightarrow \operatorname{Sym}(G)$ defined by $g \mapsto \varphi_{g}$ is a group homomorphism, where $\operatorname{Sym}(G)$ is the symmetric group on the underlying set of G (i.e. the group of bijection function from G to G, equipped with function composition.)
We claim that $Z(G)=\operatorname{ker} \varphi$. Indeed, $g \in Z(G) \Longleftrightarrow g x g^{-1}=x$ for any $x \in G$ $\Longleftrightarrow \varphi_{g}(x)=\operatorname{id}(x)$ for any $x \in G \Longleftrightarrow \varphi_{g}=\operatorname{id} \Longleftrightarrow g \in \operatorname{ker} \varphi$. Thus $Z(G)$ is normal.
(c) Recall that $[G: H]$ is defined as the number (cardinality) of left cosets of H in G. First, we shall prove that the number of left cosets is the same as the number or right cosets. Let L and R be the set of left and right cosets of H in G respectively, we define a function $f: L \rightarrow R$ by $f(a H)=H a^{-1}$. We claim that this is a welldefined bijective function, thus showing that $|L|=|R|$. If a and a^{\prime} represent the same left cosets, i.e. $a H=a^{\prime} H$, then there exists some $h \in H$ so that $a^{\prime}=a h$, then $f\left(a^{\prime} H\right)=H a^{\prime-1}=H h^{-1} a^{-1}=H a^{-1}=f(a H)$, so that f is well-defined. It is injective because

$$
\begin{aligned}
f(a H)=f\left(a^{\prime} H\right) & \Longleftrightarrow H a^{-1}=H a^{\prime-1} \\
& \Longleftrightarrow \text { there exists some } h \in H \text { so that } a^{\prime-1}=h a^{-1} \\
& \Longleftrightarrow \text { there exists some } \tilde{h} \text { so that } a^{\prime}=a \tilde{h} \\
& \Longleftrightarrow a H=a^{\prime} H .
\end{aligned}
$$

And it is surjective since for any right coset $H b \in R, f\left(b^{-1} H\right)=H b$. Thus f is bijective and $|L|=|R|$.
In our case, that means that there are precisely two left cosets and two right cosets of H in G. Since cosets define a partition of G, that means that if $a \notin H$, then $a H \neq H$ and $H a \neq H$, so that $a H$ and $H a$ must both be the complement of H, $G \backslash H$, in particular they are equal. And if $a \in H$, then $a H=H=H a$. Therefore we have proven that H is normal.
(d) If $\left\{H_{i}\right\}_{i \in I}$ are normal subgroups, then for any $a \in G$, we have $a H_{i}=H_{i} a$. Now for $\bigcap_{i \in I} H_{i}$, note that for any $a \in G$,

$$
a \bigcap_{i \in I} H_{i}:=\left\{a h: h \in H_{i} \text { for all } i \in I\right\}=\bigcap_{i \in I} a H_{i}=\bigcap_{i \in I} H_{i} a=\left(\bigcap_{i \in I} H_{i}\right) a .
$$

So $\bigcap_{i \in I} H_{i}$ is normal.
We can also prove the normality by constructing a homomorphism. Recall that since H_{i} are normal, we have canonical projections $\pi_{i}: G \rightarrow G / H_{i}$ defined by $\pi_{i}(a)=a H_{i}$ such that ker $\pi_{i}=H_{i}$. Consider $\pi: G \rightarrow \prod_{i \in I} G / H_{i}$ defined by $\pi(a)=\left(\pi_{i}(a)\right)_{i \in I}=\left(a H_{i}\right)_{i \in I}$. We claim that ker $\pi=\bigcap_{i \in I} H_{i}$. Indeed, $a \in \operatorname{ker} \pi$ precisely when $\pi(a)=e \in \prod_{i \in I} G / H_{i}$, but the identity e in the product is just the product of identities, so that $\pi_{i}(a)=e_{i} \in G / H_{i}$ for all $i \in I$. This happens exactly when $a \in \operatorname{ker} \pi_{i}$ for all $i \in I$, i.e. $a \in \bigcap_{i \in I} \operatorname{ker} \pi_{i}=\bigcap_{i \in I} H_{i}$.
(e) If $K \leq H \leq G$ and $K \unlhd G$, then for all $a \in G$, $a K=K a$. In particular, for any $a \in H \leq G, a K=K a$, so K is also normal in H.
We can also prove it using kernel. Since $K \unlhd G$, we have $\pi: G \rightarrow G / K$ with $\operatorname{ker} \pi=K$. Clearly, the restriction $\left.\pi\right|_{H}: H \rightarrow G / K$ is still a homomorphism, with $\operatorname{ker}\left(\left.\pi\right|_{H}\right)=K$, thus $K \unlhd H$.
(f) For any $a \in G_{1}, b \in G_{2}$, we have $(a, b) H \times K=a H \times b K=H a \times K b=$ $H \times K(a, b)$, so that $H \times K$ is normal.
Alternatively, consider canonical projections $\pi_{1}: G_{1} \rightarrow G_{1} / H$ and $\pi_{2}: G_{2} \rightarrow$ G_{2} / K, we may define $\pi: G_{1} \times G_{2} \rightarrow G_{1} / H \times G_{2} / K$ by $\pi(a, b)=\left(\pi_{1}(a), \pi_{2}(b)\right)$.

Then we have

$$
\begin{aligned}
\operatorname{ker} \pi & =\left\{(a, b):\left(\pi_{1}(a), \pi_{2}(b)\right)=(a H, b K)=(H, K) \in G_{1} / H \times G_{2} / K\right\} \\
& =\{(a, b): a \in H, b \in K\} \\
& =H \times K .
\end{aligned}
$$

3. Let G / H be the set of left cosets of H in G and similar for G / K and H / K (we did not assume normality of H in G etc, here G / H is only a set, not necessarily with a group structure.) Define a function $f: G / K \rightarrow G / H$ by $f(a K)=a H$. This is well-defined since if $a K=a^{\prime} K$ then $a^{\prime}=a k$ for some $k \in K$, so that $a^{\prime} H=a k H=a H$ as $k \in H$. We claim that f is surjective, with $\left|f^{-1}(a H)\right|=[H: K]$ for any $a H \in G / H$. Thus, we have

$$
\begin{aligned}
{[G: K]=|G / K| } & =\left|\bigsqcup_{a H \in G / H} f^{-1}(a H)\right| \\
& =\sum_{a H \in G / H}\left|f^{-1}(a H)\right| \\
& =\sum_{a H \in G / H}[H: K] \\
& =[G: H][H: K] .
\end{aligned}
$$

Now we prove the claim. Clearly f is surjective, since for any $a H \in G / H$, we may take $a K \in G / K$, then $f(a K)=a H$ by definition. Now fix some $a H \in G / K$ and consider $f^{-1}(a H)$. We have $b K \in f^{-1}(a H)$ when $f(b K)=b H=a H$. This happens precisely when $b=a h$ for some $h \in H$. Thus, we have

$$
f^{-1}(a H)=\{a h K \in G / K: h \in H\} .
$$

Now consider the function $s: f^{-1}(a H) \rightarrow H / K$ where we send $a h K \in f^{-1}(a H)$ to $s(a h K)=h K$. This is well-defined because if $a h K=a h^{\prime} K$, then $a h^{\prime}=a h k$ for some $k \in K$, so that $h^{\prime}=h k$, which implies that $h^{\prime} K=h K$. Note that s is also an injective function, since $h K=s(a h K)=s\left(a h^{\prime} K\right)=h^{\prime} K$ precisely when $h^{\prime}=h k$, which implies $a h=a h^{\prime} k$, so that $a h K=a h^{\prime} K$. Surjectivity of s follows from the definition directly. Thus s is a bijection and establishes $\left|f^{-1}(a H)\right|=|H / K|=[H: K]$.
The converse is false. Consider $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then $\langle(1,1)\rangle$ is a normal subgroup that is not a product.
4. If G is a cyclic group, take $a \in G$ be a generator. Then any $g \in G$ can be written as $g=a^{k}$ for some $k \in \mathbb{Z}$. Now let $g H \in G / H$ be any element, then $g H=a^{k} H=(a H)^{k}$ for some $k \in \mathbb{Z}$. Thus $a H$ is a generator of G / H and G / H is cyclic.
5. If both H and G / H are cyclic, let $a \in H$ and $b H \in G / H$ be generators. We claim that $\langle a, b\rangle=G$. Let $g \in G$ be any element, then g is in the left coset $g H$, so there exists some k so that $g H=(b H)^{k}=b^{k} H$. Therefore, there is some $h \in H$ such that $g=b^{k} h$. Now H is generated by a, so there is some l so that $h=a^{l}$. Putting these together yields $g=b^{k} h=b^{k} a^{l}$.

