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1. Denote K =
⋂

S⊂H≤GH , we will show that ⟨S⟩ = K by both inclusions ⊂ and ⊃.

(⊂) Let x = am1
1 · · · amn

n ∈ ⟨S⟩ be an arbitrary element and let H be any subgroup of G
containing S, then we have a1, ..., an ∈ S ⊂ H , so by property of H being a subgroup,
we have x = am1

1 · · · amn
n ∈ H since x is obtained from multiplication and taking inverse

on the ai’s. Thus x ∈ H for every subgroup H containing S, i.e. x ∈
⋂

S⊂H≤G H .

(⊃) It suffices to prove that ⟨S⟩ is a subgroup containing S, then ⟨S⟩ ∈ {H : S ⊂
H ≤ G} and thus ⟨S⟩ ⊃

⋂
S⊂H≤GH . Firstly, ⟨S⟩ contains S since for every a ∈ S,

taking n = 1, a1 = a and m1 = 1 yields a ∈ ⟨S⟩. Secondly, ⟨S⟩ is a subgroup, since
for x = am1

1 · · · amn
n and y = bk11 · · · bkll , we have xy−1 = am1

1 · · · amn
n b−kl

l · · · b−k1
1 , with

m1, ...,mn,−kl, ...,−k1 ∈ Z, so xy−1 ∈ ⟨S⟩.
By ”the smallest subgroup of G containing S”, we are referring to the subgroup T of G
with the properties that S ⊂ T , and whenever H is another subgroup containing S, then
T ≤ H .

We will show that T = K, hence the remark that ⟨S⟩ is precisely the smallest subgroup of
G containing S. First of all, since K contains the subset S, we have T ≤ K by definition
of T . On the other hand, since T is a subgroup containing S, T ∈ {H : S ⊂ H ≤ G},
and hence T ≥

⋂
S⊂H≤GH = K. Hence, we have T = K.

Remark. Such construction for the smallest sub-structure containing a given set appears
in many different contexts. The general phenomenon is, given an algebraic structure A
(think of it as group, ring, field, algebras, etc), and any subset S ⊂ A, one can informally
think of

⟨S⟩ := The set of elements in A generated by taking algebraic operations on elements of S.

When equipped with the algebraic operation, ⟨S⟩ forms a sub-structure (subgroup, sub-
ring, subfield, subalgebra, etc). Then one can prove that

⟨S⟩ =
⋂

A′:S⊂A′≤A

A′ = The smallest substructure of A containing the subset S.

For a more familiar example, let V be a vector space, say over R, and S ⊂ V any subset.
Then one can define

⟨S⟩ = Span(S) :=

{
n∑

i=1

aivi : vi ∈ S, ai ∈ R

}
≤ V.

Then ⟨S⟩ is the vector subspace of V generated by subset S, which can be shown to be
equal to

⋂
S⊂W≤V W the intersection of all subspace containing S.



2. Recall that for any element g ∈ G, ⟨g⟩ is always cyclic, thus it suffices to find out what
|g| is. In our case, ⟨ri⟩ ≤ ⟨r⟩ ∼= Zn and thus ⟨ri⟩ = {e, ri, r2i, ..., r(k−1)i}, where
k = n/ gcd(i, n). As for s ∈ Dn, |s| = 2 always holds, so ⟨s⟩ = {e, s}.

3. We will show that H1 = S4. One way of showing this is that adjacent transpositions
are sufficient to generate all transpositions. In our case, we may obtain (13), (24) and
(14) from the given from transpositions as follows: (13) = (13)(12)(12) = (123)(12) =
(12)(23)(12) ∈ H1; and (24) = (24)(23)(23) = (234)(23) = (23)(34)(23) ∈ H1; and
(14) = (14)(12)(12) = (124)(12) = (12)(24)(12) ∈ H1. Once we have all transposi-
tions, we can generate all k-cycles. In fact, the last statement works for all Sn, suppose
(x1x2 . . . xk) ∈ Sn is a k-cycle, then (x1x2 . . . xn) = (x1xk)(x1xk−1) . . . (x1x2) can be
expressed as a product of transpositions. Since every element of S4 is a product of disjoint
cycles, this shows that H1 = S4.

As for H2, we have (132) = (123)2 ∈ H2, as well as (132)(234) = (134) ∈ H2, and also
(123)(324) = (124) ∈ H2. Thus we have H2 containing all the 3-cycles (there are 8 of
them). Note that |S4| has 24 elements, and |H2| ≥ 9 since H2 has 8 non-trivial elements
along with the identity. Thus by Lagrange’s theorem, |H2| = 12 or 24. We know that H2

is not the whole group S4 since both (123) and (234) are even elements, so any element
that is a product of these elements will again be even. In particular, any odd element, for
example (12) will not be an element of H2. Thus |H2| = 12 and [S4 : H2] = 2, the only
index 2 subgroup of S4 is the alternating group A4, so H2 = A4.

4. (a) Symmetry: If a ∼ b, then there is some g so that b = gag−1, then for g−1 ∈ G, we
have a = g−1ag = g−1a(g−1)−1.
Reflexivity: a ∼ a holds since eae−1 = a.
Transitivity: if a ∼ b and b ∼ c, then there are g, h ∈ G so that b = gag−1 and
c = hbh−1, then for hg ∈ G, we have c = hbh−1 = (hg)a(hg)−1, so that a ∼ c.

(b) i. a = (12) is a 2-cycle, by tutorial 2 Q1, we know that conjugates of any 2-cycle
are precisely all the 2-cycles (there are 6 such cycles, namely (12), (13), (14), (23), (24)
and (34).

ii. For a = r2 ∈ D6, for another rotation rk ∈ D6, since rkr2r−k = rk+2−k = r2,
we do not get new elements in the conjugacy class. And for reflections srk, note
that srkr2r−ks = sr2s = r−2 = r4. Thus, the conjugacy class Ca = {r4, r2}.

iii. The same calculation in part (ii) yields that the only elements in Ca for a = r3

are r3 and r−3 = r3. So in this case, Ca = {r3}.
iv. For any (a, b) ∈ Z×Z, we have (a, b)+(1, 2)+(−(a, b)) = (a+1−a, b+2−b) =

(1, 2), so Ca = {(1, 2)}.
v. If G is an abelian group, then gag−1 = agg−1 = a for any g ∈ G, so the

conjugacy class Ca is always a singleton consisting of a.

(c) Let b, c ∈ Ca be elements of the same conjugacy class, then we may write b = gag−1

and c = hah−1 for some g, h ∈ G. Then

bk = e ⇐⇒ (gag−1)k = gakg−1 = e

⇐⇒ ak = e

⇐⇒ (hah−1) = hakh−1 = e

⇐⇒ ck = e.



In particular, if b has some finite order n, that means n is the minimal positive integer
so that bn = e, so n is also the order of c. And if b has infinite order, then bk ̸= e for
any positive k, so the same holds for c as well.

(d) Let g, h ∈ CG(a), then by assumption we have gag−1 = hah−1 = a. So (gh)a(gh)−1 =
g(hah−1)g−1 = gag−1 = a, and we have gh ∈ CG(a) as well. Also multiplying
g−1 on the left and g on the right to the equation gag−1 = a gives a = g−1ag, so
that g−1 ∈ CG(a). So CG(a) is a subgroup.

(e) We define a function f : {Left cosets of CG(a) in G} → Ca as follows, if gCG(a)
is a left coset, we map it to the element gag−1 ∈ Ca. We will show that this map is
a well-defined bijection.
First, if g and h represents the same left cosets, i.e. g1CG(a) = g2CG(a), then
g−1
1 g2 ∈ CG(a). So g−1

1 g2a(g
−1
1 g2)

−1 = g−1
1 g2ag

−1
2 g1 = a. If we multiply g1 to

the equation on the left and g−1
1 on the right, we obtain g2ag

−1
2 = gag−1. Thus

f(g1CG(a)) = f(g2CG(a)), and the function is well-defined (i.e. it is independent
of the choice of representatives g1, g2.) Next, the function f is injective. Since
if f(gCG(a)) = f(hCG(a)), then gag−1 = hah−1, so that h−1gag−1h = a, i.e.
h−1g ∈ CG(a). This means that gCG(a) = hCG(a). Finally for surjectively, this
is clear from definition since every element of Ca is of the form gag−1 for some
g ∈ G, so it is the image f(gCG(a)).
The bijection establishes the equality of the cardinality of sets, so that [G : CG(a)] =
|Ca|.


