THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2022-23
 Tutorial 4 Problems
 5th February 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. Let S be a subset of a group G, recall that $\langle S\rangle$ is defined to be the set of all possible finite products elements in S, i.e. $\langle S\rangle:=\left\{a_{1}^{m_{1}} \ldots a_{n}^{m_{n}}: n \in \mathbb{N}, a_{i} \in S, m_{i} \in \mathbb{Z}\right\}$. Prove that $\langle S\rangle=\bigcap_{S \subset H \leq G} H$, and also explain why the latter can be understood as "the smallest subgroup of G containing $S^{\prime \prime}$.
2. Describe the subgroups $\left\langle r^{i}\right\rangle,\langle s\rangle$ in D_{n}.
3. Describe the subgroups $H_{1}=\langle(12),(23),(34)\rangle$ and $H_{2}=\langle(123),(234)\rangle$ in S_{4}
4. (a) Let G be a finite group, define a relation \sim on G by declaring $a \sim b$ if there exists some $g \in G$ such that $b=g a g^{-1}$. Prove that \sim is an equivalence relation. The equivalence class C_{a} of an element $a \in G$ is called the conjugacy class of a.
(b) Find out what C_{a} is for the following elements in their respective groups.
i. $a=(12) \in S_{4}$.
ii. $a=r^{2} \in D_{6}$.
iii. $a=r^{3} \in D_{6}$.
iv. $a=(1,2) \in \mathbb{Z} \times \mathbb{Z}$.
v. What can you say about C_{a} for any $a \in G$ in the case where G is abelian?
(c) Show that elements in the same conjugacy class has the same order.
(d) Let $C_{G}(a):=\left\{g \in G: \operatorname{gag}^{-1}=a\right\}$, prove that $C_{G}(a)$ is a subgroup. It is called the centralizer of a.
(e) Prove that $\left|C_{a}\right|=\left[G: C_{G}(a)\right]$, thus $\left|C_{a}\right|$ divides $|G|$. (Hint: find a bijection between C_{a} and the set of left cosets of $C_{G}(a)$.)

The following questions and materials are extra contents and will not be examined.
5. Let S be a set, define the $A(S)=\left\{a_{1}^{m_{1}} \ldots a_{n}^{m_{n}}: n \in \mathbb{N}, a_{i} \in S, m_{i} \in \mathbb{Z}\right\} \cup\{e\}$, here we think of $A(S)$ as the set of "words" and e as the "empty word". We may define an equivalence relation \sim on $A(S)$ as follows. If a^{k} and a^{-k} appear in a word next to each other, we may reduce the word by cancelling the two terms. More generally, if a^{m} and a^{n} appear next to each other in a word, we identify it with the word where $a^{m} a^{n}$ is replaced by a^{m+n}. If the resulting word is empty, we identify it with e. For example, under the equivalence relation, $a b c c^{-1} b a \sim a b b a \sim a b^{2} a$, and $a a^{-1} \sim e$.
Consider $F(S):=A(S) / \sim$ the set of equivalence classes in $A(S)$. We may define an operation $*$ on $F(S)$ by concatenation of words, i.e. we put two words next to each other and consider its class. For example, $a b c * c^{-1} b a:=a b c c^{-1} b a \sim a b^{2} a$.
Prove that $F(S)$ is a group under the operation $*$. This is called the free group with generator S.
6. Previously, we have defined $\langle S\rangle$ internally for a subset S in a group G. Now, we will define a group from generators that are subject to some relations, similar to the process above. Note that in the case for the free group $F(S)$, we impose no relations (under \sim) for the elements in S, except the reduction rule that are required to turn $F(S)$ a group.
More generally, let S be a set, and let R be a set of words in S, we define an equivalence relation \sim_{R} on $A(S)$ by the relation described in Q5, with the additional relation that the words in R are related to the empty word e (i.e. it can be deleted). For example, suppose $S=\{a, b\}$ and $R=\left\{a b a^{-1}\right\}$, then we have $b^{2} a^{2} b a \sim_{R} b^{2} a\left(a b a^{-1}\right) a^{2} \sim_{R} b^{2} a a^{2} \sim_{R} b^{2} a^{3}$. We define the set $\langle S \mid R\rangle=A(S) / \sim_{R}$ to be the set of equivalent classes, and define the group operation by concatenation similar to that of Q5. This group is called the group generated by S subject to relation R.
This definition took a lot of work and may seem complicated. So, it is instructive to look at some examples from familiar groups. Convince yourselves that the following identifications make sense.
(a) $F(S)=\langle S \mid \emptyset\rangle$.
(b) $\mathbb{Z}=F(\{a\})=\langle a \mid \emptyset\rangle$
(c) $\mathbb{Z}_{n}=\left\langle a \mid a^{n}\right\rangle$
(d) $\mathbb{Z} \times \mathbb{Z}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle$
(e) $D_{n}=\left\langle r, s \mid r^{n}, s^{2}, r s r s\right\rangle=\left\langle s_{1}, s_{2} \mid s_{1}^{2}, s_{2}^{2},\left(s_{1} s_{2}\right)^{n}\right\rangle$
(f) $S_{n}=\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\right| s_{i}^{2},\left(s_{i} s_{i+1}\right)^{3},\left(s_{i} s_{j}\right)^{2}$ for $\left.i \neq j\right\rangle$
7. Can you figure out why every group can be obtained from the construction of Q6?

