THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 Honours Algebraic Structures 2023-24 Tutorial 3 solutions 29th January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. Let $x, y \in gHg^{-1}$, then by definition there are $u, v \in H$ such that $x = gug^{-1}$ and $y = gvg^{-1}$, then $xy = gug^{-1}gv^{-1}g^{-1} = guv^{-1}g^{-1}$. Since $H \leq G$, $uv^{-1} \in H$ and thus $xy \in gHg^{-1}$.

We claim that the function $f_1 : H \to gHg^{-1}$ defined by $x \mapsto gxg^{-1}$ is a bijection, thus $|H| = |gHg^{-1}|$. This is because the function $f_2 : gHg^{-1} \to H$ defined by $y \mapsto g^{-1}yg$ is the inverse function to f_1 , since $f_1(f_2(y)) = gg^{-1}ygg^{-1} = y$ and $f_2(f_1(x)) = g^{-1}gxg^{-1}g = x$.

2. $H \cap K$ is a subgroup. Let $x, y \in H \cap K$, then $x, y \in H$ and $x, y \in K$, and since H, K are subgroups of G, we have xy^{-1} lies in H and K, so $xy^{-1} \in H \cap K$.

 $H \cup K$ is not necessarily a subgroup. For example, take $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, $H = \mathbb{Z}_2 \times \{0\}$ and $K = \{0\} \times \mathbb{Z}_2$, then $H \cup K = \{(0,0), (1,0), (0,1)\}$. This is not a subgroup of Gsince $(1,0), (0,1) \in H \cup K$ but $(1,0) + (0,1) \notin H \cup K$.

- 3. Let $(h_1, k_1), (h_2, k_2) \in H \times K$, since H, K are subgroups of G_1, G_2 respectively, we have $h_1 h_2^{-1} \in H$ and $k_1 k_2^{-1} \in K$, thus $(h_1, k_1) * (h_2, k_2^{-1}) = (h_1 h_2^{-1}, k_1 k_2^{-1}) \in H \times K$.
- 4. Let $g, h \in Z$, by definition $gh^{-1}x = g(x^{-1}h)^{-1} = g(hx^{-1})^{-1} = gx^{-1}h^{-1} = x^{-1}gh^{-1}$ for arbitrary $x \in G$. Since gh^{-1} commutes with arbitrary $x \in G$, $gh^{-1} \in Z$. So Z is a subgroup.
- 5. Let $g, h \in N_G(H)$, it suffices to prove that $gh^{-1}Hhg^{-1} = H$. First, we show that $h^{-1}Hh = H$. This follows from the fact that $h \in N_G(H)$, so that $hHh^{-1} = H$. Note that $h^{-1}(hHh^{-1})h$ by definition equals to $\{h^{-1}xh : x \in hHh^{-1}\} = \{h^{-1}(hyh^{-1})h : y \in H\} = \{y : y \in H\} = H$. So that composing $h^{-1}(-)h$ on both sides, we get $H = h^{-1}(hHh^{-1})h = h^{-1}Hh$. So $gh^{-1}Hhg^{-1} = gHg^{-1} = H$, as desired.
- Consider Z_{>0} ⊂ Z, this subset is closed under multiplication, since if m, n > 0, then mn > 0. But Z_{>0} is not a subgroup of Z, since the inverse of 1 ∈ Z_{>0}, which is −1, is not in Z_{>0}.
- 7. If G is finite, then for any $x \in H \subset G$, let n = |x|. We have $x^n = e$, so that $x^{n-1} = x^{-1}$. Since H is closed under group operation, this shows that $x^{-1} \in H$. So that H is also closed under taking inverse.
- False, in Z₂ × Z₂, every proper subgroup is cyclic. But it is not a cyclic group since there is no element of order 4. The subgroups of Z₂ × Z₂ are {(0,0)}, ((1,0)), ((0,1)), ((1,1)) and the group itself, which are all cyclic.

Alternatively, every dihedral group D_n where n is a prime number also has proper subgroups that are cyclic. Recall that every subgroups of Z_n is cyclic. So it suffices to consider all subgroups of the form (k) ≤ Z_n. Furthermore, this subgroup is uniquely determined by gcd(k, n). So it suffices to look at all possible gcd's.

For \mathbb{Z}_8 , the possible gcd's are 1, 2, 4, 8, generated by 8/1, 8/2, 8/4, 8/8 respectively. So the subgroups are: $\langle 0 \rangle, \langle 4 \rangle, \langle 2 \rangle, \langle 1 \rangle$.

For \mathbb{Z}_{11} , the gcd's are 1, 11, generated by 11, 1 respectively. So the subgroups are $\langle 0 \rangle$, $\langle 1 \rangle$. For \mathbb{Z}_{12} , the gcd's are 1, 2, 3, 4, 6, 12, generated by 12/1, 12/2, 12/3, 12/4, 12/6, 12/12 respectively, so the possible subgroups are $\langle 0 \rangle$, $\langle 6 \rangle$, $\langle 4 \rangle$, $\langle 3 \rangle$, $\langle 2 \rangle$, $\langle 1 \rangle$.

10. If G is finite, then clearly G has finitely many subgroups, since a subgroup is in particular a subset of G, and therefore the set of subgroups of G can be regarded as subset of the power set of G, so its cardinality is bounded above by $2^{|G|}$.

Now suppose that G is infinite. If there exists some $g \in G$ such that $\langle g \rangle$ is infinite, then $\langle g \rangle \cong \mathbb{Z}$, then $\langle ng \rangle \leq \langle g \rangle \leq G$ for each $n \in \mathbb{Z}_{>0}$, so there are infinitely many subgroups of G.

Otherwise, if $\langle g \rangle$ is always finite for any $g \in G$, we shall prove that $\{\langle g \rangle : g \in G\}$ is an infinite set, and thus G has infinitely many subgroups. If it was the case that $\{\langle g \rangle : g \in G\}$ is finite, then $G = \bigcup_{g \in G} \langle g \rangle$ as sets, can be expressed as a finite union of finite sets, thus is finite. This is a contradiction.

In both situations, G has infinitely many subgroups.

- 11. Assume that G is some group such that it is a union of two proper subgroups, say G = H ∪ K. Note that H ⊄ K and K ⊄ H, otherwise G = H or G = K and the subgroups would not be proper. Now pick h ∈ H \ K and k ∈ K \ H and consider hk ∈ G. We have hk ∈ H or hk ∈ K. If hk ∈ H, then h⁻¹ ⋅ hk = k ∈ H, contradiction. Otherwise if hk ∈ K, then hk ⋅ k⁻¹ = h ∈ K, also a contradiction. So it is impossible for G to be the union of two proper subgroups.
- 12. (a) Let $x, y \in G$, by assumption $x^2 = y^2 = e$, so that $x = x^{-1}$ and $y = y^{-1}$. Now consider the element xy, we have $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$. So x, y commutes with each other for arbitrary $x, y \in G$, i.e. G is abelian.
 - (b) To show that $H \cup gH$ is a subgroup, it suffices to prove that it is closed under group operation and inversion. $H \cup gH$ is closed under inversion simply because every non-identity element has inverse equals to itself, so $H \cup gH$ contains all inverses of its elements. As for closedness under operation, we consider the following cases:

i. $x, y \in H$, then $xy \in H$ since H is a subgroup. ii. $x \in H, y = gk \in gH$, then $xy = xgk = g(xk) \in gH$ since $xk \in H$. iii. $x = gh \in gH, y \in H$, then $xy = g(hy) \in gH$ since $hy \in H$. iv. $x = gh, y = gk \in gH$, then $xy = ghgk = g^2hk = hk \in H$.

So in any case, the product of two elements in $H \cup gH$ lies in itself.

(c) Recall that the function f : G → G defined by f(x) = gx defines a bijection. So f|_H : H → gH also restricts to a bijection. Therefore |H| = |gH|. Now we will show that H ∩ gH = Ø, so that |H ∪ gH| = |H| + |gH| = 2|H| as desired. To see why, suppose x ∈ H ∩ gH, then x ∈ H and x = gh for some x ∈ H. This implies g = xh⁻¹ ∈ H, which contradicts with the assumption that g ∉ H.

(d) Take $H_0 = \{e\}$, we will construct a sequence of subgroups $H_0 \leq H_1 \leq ... \leq H_k = G$, such that $|H_{i+1}| = 2|H_i|$. The construction is by induction, suppose H_i has been constructed for some $i \geq 0$, if $H_i = G$, then we are done. Otherwise, pick some $g \in G \setminus H_i$, then define $H_{i+1} = H_i \cup gH_i$, which is a subgroup by part (b), and the order satisfies $|H_{i+1}| = 2|H_i|$ by part (c). Since G is a finite group, this process must terminate at some finite step k, this gives $H_k = G$, so that G has order equals to $2^k |H_0| = 2^k$.