THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 3 solutions
 29th January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. Let $x, y \in g H g^{-1}$, then by definition there are $u, v \in H$ such that $x=g u g^{-1}$ and $y=g v g^{-1}$, then $x y=g u g^{-1} g v^{-1} g^{-1}=g u v^{-1} g^{-1}$. Since $H \leq G, u v^{-1} \in H$ and thus $x y \in g H g^{-1}$.
We claim that the function $f_{1}: H \rightarrow g H g^{-1}$ defined by $x \mapsto g x g^{-1}$ is a bijection, thus $|H|=\left|g H^{-1}\right|$. This is because the function $f_{2}: g H^{-1} \rightarrow H$ defined by $y \mapsto$ $g^{-1} y g$ is the inverse function to f_{1}, since $f_{1}\left(f_{2}(y)\right)=g g^{-1} y g g^{-1}=y$ and $f_{2}\left(f_{1}(x)\right)=$ $g^{-1} g x g^{-1} g=x$.
2. $H \cap K$ is a subgroup. Let $x, y \in H \cap K$, then $x, y \in H$ and $x, y \in K$, and since H, K are subgroups of G, we have $x y^{-1}$ lies in H and K, so $x y^{-1} \in H \cap K$.
$H \cup K$ is not necessarily a subgroup. For example, take $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, H=\mathbb{Z}_{2} \times\{0\}$ and $K=\{0\} \times \mathbb{Z}_{2}$, then $H \cup K=\{(0,0),(1,0),(0,1)\}$. This is not a subgroup of G since $(1,0),(0,1) \in H \cup K$ but $(1,0)+(0,1) \notin H \cup K$.
3. Let $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$, since H, K are subgroups of G_{1}, G_{2} respectively, we have $h_{1} h_{2}^{-1} \in H$ and $k_{1} k_{2}^{-1} \in K$, thus $\left(h_{1}, k_{1}\right) *\left(h_{2}, k_{2}^{-1}\right)=\left(h_{1} h_{2}^{-1}, k_{1} k_{2}^{-1}\right) \in H \times K$.
4. Let $g, h \in Z$, by definition $g h^{-1} x=g\left(x^{-1} h\right)^{-1}=g\left(h x^{-1}\right)^{-1}=g x^{-1} h^{-1}=x^{-1} g h^{-1}$ for arbitrary $x \in G$. Since $g h^{-1}$ commutes with arbitrary $x \in G, g h^{-1} \in Z$. So Z is a subgroup.
5. Let $g, h \in N_{G}(H)$, it suffices to prove that $g h^{-1} H h g^{-1}=H$. First, we show that $h^{-1} H h=H$. This follows from the fact that $h \in N_{G}(H)$, so that $h H h^{-1}=H$. Note that $h^{-1}\left(h H h^{-1}\right) h$ by definition equals to $\left\{h^{-1} x h: x \in h H h^{-1}\right\}=\left\{h^{-1}\left(h y h^{-1}\right) h\right.$: $y \in H\}=\{y: y \in H\}=H$. So that composing $h^{-1}(-) h$ on both sides, we get $H=h^{-1}\left(h H h^{-1}\right) h=h^{-1} H h$. So $g h^{-1} H h g^{-1}=g H g^{-1}=H$, as desired.
6. Consider $\mathbb{Z}_{>0} \subset \mathbb{Z}$, this subset is closed under multiplication, since if $m, n>0$, then $m n>0$. But $\mathbb{Z}_{>0}$ is not a subgroup of \mathbb{Z}, since the inverse of $1 \in \mathbb{Z}_{>0}$, which is -1 , is not in $\mathbb{Z}_{>0}$.
7. If G is finite, then for any $x \in H \subset G$, let $n=|x|$. We have $x^{n}=e$, so that $x^{n-1}=x^{-1}$. Since H is closed under group operation, this shows that $x^{-1} \in H$. So that H is also closed under taking inverse.
8. False, in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, every proper subgroup is cyclic. But it is not a cyclic group since there is no element of order 4 . The subgroups of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are $\{(0,0)\},\langle(1,0)\rangle,\langle(0,1)\rangle,\langle(1,1)\rangle$ and the group itself, which are all cyclic.
Alternatively, every dihedral group D_{n} where n is a prime number also has proper subgroups that are cyclic.
9. Recall that every subgroups of \mathbb{Z}_{n} is cyclic. So it suffices to consider all subgroups of the form $\langle k\rangle \leq \mathbb{Z}_{n}$. Furthermore, this subgroup is uniquely determined by $\operatorname{gcd}(k, n)$. So it suffices to look at all possible gcd's.
For \mathbb{Z}_{8}, the possible gcd's are $1,2,4,8$, generated by $8 / 1,8 / 2,8 / 4,8 / 8$ respectively. So the subgroups are: $\langle 0\rangle,\langle 4\rangle,\langle 2\rangle,\langle 1\rangle$.
For \mathbb{Z}_{11}, the gcd's are 1,11 , generated by 11,1 respectively. So the subgroups are $\langle 0\rangle,\langle 1\rangle$.
For \mathbb{Z}_{12}, the gcd's are $1,2,3,4,6,12$, generated by $12 / 1,12 / 2,12 / 3,12 / 4,12 / 6,12 / 12$ respectively, so the possible subgroups are $\langle 0\rangle,\langle 6\rangle,\langle 4\rangle,\langle 3\rangle,\langle 2\rangle,\langle 1\rangle$.
10. If G is finite, then clearly G has finitely many subgroups, since a subgroup is in particular a subset of G, and therefore the set of subgroups of G can be regarded as subset of the power set of G, so its cardinality is bounded above by $2^{|G|}$.
Now suppose that G is infinite. If there exists some $g \in G$ such that $\langle g\rangle$ is infinite, then $\langle g\rangle \cong \mathbb{Z}$, then $\langle n g\rangle \leq\langle g\rangle \leq G$ for each $n \in \mathbb{Z}_{>0}$, so there are infinitely many subgroups of G.
Otherwise, if $\langle g\rangle$ is always finite for any $g \in G$, we shall prove that $\{\langle g\rangle: g \in G\}$ is an infinite set, and thus G has infinitely many subgroups. If it was the case that $\{\langle g\rangle: g \in$ $G\}$ is finite, then $G=\bigcup_{g \in G}\langle g\rangle$ as sets, can be expressed as a finite union of finite sets, thus is finite. This is a contradiction.
In both situations, G has infinitely many subgroups.
11. Assume that G is some group such that it is a union of two proper subgroups, say $G=$ $H \cup K$. Note that $H \not \subset K$ and $K \not \subset H$, otherwise $G=H$ or $G=K$ and the subgroups would not be proper. Now pick $h \in H \backslash K$ and $k \in K \backslash H$ and consider $h k \in G$. We have $h k \in H$ or $h k \in K$. If $h k \in H$, then $h^{-1} \cdot h k=k \in H$, contradiction. Otherwise if $h k \in K$, then $h k \cdot k^{-1}=h \in K$, also a contradiction. So it is impossible for G to be the union of two proper subgroups.
12. (a) Let $x, y \in G$, by assumption $x^{2}=y^{2}=e$, so that $x=x^{-1}$ and $y=y^{-1}$. Now consider the element $x y$, we have $x y=(x y)^{-1}=y^{-1} x^{-1}=y x$. So x, y commutes with each other for arbitrary $x, y \in G$, i.e. G is abelian.
(b) To show that $H \cup g H$ is a subgroup, it suffices to prove that it is closed under group operation and inversion. $H \cup g H$ is closed under inversion simply because every non-identity element has inverse equals to itself, so $H \cup g H$ contains all inverses of its elements. As for closedness under operation, we consider the following cases:
i. $x, y \in H$, then $x y \in H$ since H is a subgroup.
ii. $x \in H, y=g k \in g H$, then $x y=x g k=g(x k) \in g H$ since $x k \in H$.
iii. $x=g h \in g H, y \in H$, then $x y=g(h y) \in g H$ since $h y \in H$.
iv. $x=g h, y=g k \in g H$, then $x y=g h g k=g^{2} h k=h k \in H$.

So in any case, the product of two elements in $H \cup g H$ lies in itself.
(c) Recall that the function $f: G \rightarrow G$ defined by $f(x)=g x$ defines a bijection. So $\left.f\right|_{H}: H \rightarrow g H$ also restricts to a bijection. Therefore $|H|=|g H|$. Now we will show that $H \cap g H=\emptyset$, so that $|H \cup g H|=|H|+|g H|=2|H|$ as desired. To see why, suppose $x \in H \cap g H$, then $x \in H$ and $x=g h$ for some $x \in H$. This implies $g=x h^{-1} \in H$, which contradicts with the assumption that $g \notin H$.
(d) Take $H_{0}=\{e\}$, we will construct a sequence of subgroups $H_{0} \leq H_{1} \leq \ldots \leq H_{k}=$ G, such that $\left|H_{i+1}\right|=2\left|H_{i}\right|$. The construction is by induction, suppose H_{i} has been constructed for some $i \geq 0$, if $H_{i}=G$, then we are done. Otherwise, pick some $g \in G \backslash H_{i}$, then define $H_{i+1}=H_{i} \cup g H_{i}$, which is a subgroup by part (b), and the order satisfies $\left|H_{i+1}\right|=2\left|H_{i}\right|$ by part (c). Since G is a finite group, this process must terminate at some finite step k, this gives $H_{k}=G$, so that G has order equals to $2^{k}\left|H_{0}\right|=2^{k}$.

