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1. Let x, y ∈ gHg−1, then by definition there are u, v ∈ H such that x = gug−1 and
y = gvg−1, then xy = gug−1gv−1g−1 = guv−1g−1. Since H ≤ G, uv−1 ∈ H and thus
xy ∈ gHg−1.

We claim that the function f1 : H → gHg−1 defined by x 7→ gxg−1 is a bijection,
thus |H| = |gHg−1|. This is because the function f2 : gHg−1 → H defined by y 7→
g−1yg is the inverse function to f1, since f1(f2(y)) = gg−1ygg−1 = y and f2(f1(x)) =
g−1gxg−1g = x.

2. H ∩K is a subgroup. Let x, y ∈ H ∩K, then x, y ∈ H and x, y ∈ K, and since H,K
are subgroups of G, we have xy−1 lies in H and K, so xy−1 ∈ H ∩K.

H ∪K is not necessarily a subgroup. For example, take G = Z2 × Z2, H = Z2 × {0}
and K = {0} × Z2, then H ∪ K = {(0, 0), (1, 0), (0, 1)}. This is not a subgroup of G
since (1, 0), (0, 1) ∈ H ∪K but (1, 0) + (0, 1) ̸∈ H ∪K.

3. Let (h1, k1), (h2, k2) ∈ H×K, since H,K are subgroups of G1, G2 respectively, we have
h1h

−1
2 ∈ H and k1k

−1
2 ∈ K, thus (h1, k1) ∗ (h2, k

−1
2 ) = (h1h

−1
2 , k1k

−1
2 ) ∈ H ×K.

4. Let g, h ∈ Z, by definition gh−1x = g(x−1h)−1 = g(hx−1)−1 = gx−1h−1 = x−1gh−1

for arbitrary x ∈ G. Since gh−1 commutes with arbitrary x ∈ G, gh−1 ∈ Z. So Z is a
subgroup.

5. Let g, h ∈ NG(H), it suffices to prove that gh−1Hhg−1 = H . First, we show that
h−1Hh = H . This follows from the fact that h ∈ NG(H), so that hHh−1 = H . Note
that h−1(hHh−1)h by definition equals to {h−1xh : x ∈ hHh−1} = {h−1(hyh−1)h :
y ∈ H} = {y : y ∈ H} = H . So that composing h−1(−)h on both sides, we get
H = h−1(hHh−1)h = h−1Hh. So gh−1Hhg−1 = gHg−1 = H , as desired.

6. Consider Z>0 ⊂ Z, this subset is closed under multiplication, since if m,n > 0, then
mn > 0. But Z>0 is not a subgroup of Z, since the inverse of 1 ∈ Z>0, which is −1, is
not in Z>0.

7. If G is finite, then for any x ∈ H ⊂ G, let n = |x|. We have xn = e, so that xn−1 = x−1.
Since H is closed under group operation, this shows that x−1 ∈ H . So that H is also
closed under taking inverse.

8. False, in Z2 ×Z2, every proper subgroup is cyclic. But it is not a cyclic group since there
is no element of order 4. The subgroups of Z2×Z2 are {(0, 0)}, ⟨(1, 0)⟩, ⟨(0, 1)⟩, ⟨(1, 1)⟩
and the group itself, which are all cyclic.

Alternatively, every dihedral group Dn where n is a prime number also has proper sub-
groups that are cyclic.



9. Recall that every subgroups of Zn is cyclic. So it suffices to consider all subgroups of the
form ⟨k⟩ ≤ Zn. Furthermore, this subgroup is uniquely determined by gcd(k, n). So it
suffices to look at all possible gcd’s.

For Z8, the possible gcd’s are 1, 2, 4, 8, generated by 8/1, 8/2, 8/4, 8/8 respectively. So
the subgroups are: ⟨0⟩, ⟨4⟩, ⟨2⟩, ⟨1⟩.
For Z11, the gcd’s are 1, 11, generated by 11, 1 respectively. So the subgroups are ⟨0⟩, ⟨1⟩.
For Z12, the gcd’s are 1, 2, 3, 4, 6, 12, generated by 12/1, 12/2, 12/3, 12/4, 12/6, 12/12
respectively, so the possible subgroups are ⟨0⟩, ⟨6⟩, ⟨4⟩, ⟨3⟩, ⟨2⟩, ⟨1⟩.

10. If G is finite, then clearly G has finitely many subgroups, since a subgroup is in particular
a subset of G, and therefore the set of subgroups of G can be regarded as subset of the
power set of G, so its cardinality is bounded above by 2|G|.

Now suppose that G is infinite. If there exists some g ∈ G such that ⟨g⟩ is infinite, then
⟨g⟩ ∼= Z, then ⟨ng⟩ ≤ ⟨g⟩ ≤ G for each n ∈ Z>0, so there are infinitely many subgroups
of G.

Otherwise, if ⟨g⟩ is always finite for any g ∈ G, we shall prove that {⟨g⟩ : g ∈ G} is an
infinite set, and thus G has infinitely many subgroups. If it was the case that {⟨g⟩ : g ∈
G} is finite, then G =

⋃
g∈G⟨g⟩ as sets, can be expressed as a finite union of finite sets,

thus is finite. This is a contradiction.

In both situations, G has infinitely many subgroups.

11. Assume that G is some group such that it is a union of two proper subgroups, say G =
H ∪K. Note that H ̸⊂ K and K ̸⊂ H , otherwise G = H or G = K and the subgroups
would not be proper. Now pick h ∈ H \ K and k ∈ K \ H and consider hk ∈ G. We
have hk ∈ H or hk ∈ K. If hk ∈ H , then h−1 · hk = k ∈ H , contradiction. Otherwise
if hk ∈ K, then hk · k−1 = h ∈ K, also a contradiction. So it is impossible for G to be
the union of two proper subgroups.

12. (a) Let x, y ∈ G, by assumption x2 = y2 = e, so that x = x−1 and y = y−1. Now
consider the element xy, we have xy = (xy)−1 = y−1x−1 = yx. So x, y commutes
with each other for arbitrary x, y ∈ G, i.e. G is abelian.

(b) To show that H ∪ gH is a subgroup, it suffices to prove that it is closed under group
operation and inversion. H ∪ gH is closed under inversion simply because every
non-identity element has inverse equals to itself, so H ∪ gH contains all inverses of
its elements. As for closedness under operation, we consider the following cases:

i. x, y ∈ H , then xy ∈ H since H is a subgroup.
ii. x ∈ H, y = gk ∈ gH , then xy = xgk = g(xk) ∈ gH since xk ∈ H .

iii. x = gh ∈ gH, y ∈ H , then xy = g(hy) ∈ gH since hy ∈ H .
iv. x = gh, y = gk ∈ gH , then xy = ghgk = g2hk = hk ∈ H .

So in any case, the product of two elements in H ∪ gH lies in itself.

(c) Recall that the function f : G → G defined by f(x) = gx defines a bijection. So
f |H : H → gH also restricts to a bijection. Therefore |H| = |gH|. Now we will
show that H ∩ gH = ∅, so that |H ∪ gH| = |H|+ |gH| = 2|H| as desired. To see
why, suppose x ∈ H ∩ gH , then x ∈ H and x = gh for some x ∈ H . This implies
g = xh−1 ∈ H , which contradicts with the assumption that g ̸∈ H .



(d) Take H0 = {e}, we will construct a sequence of subgroups H0 ≤ H1 ≤ ... ≤ Hk =
G, such that |Hi+1| = 2|Hi|. The construction is by induction, suppose Hi has been
constructed for some i ≥ 0, if Hi = G, then we are done. Otherwise, pick some
g ∈ G \ Hi, then define Hi+1 = Hi ∪ gHi, which is a subgroup by part (b), and
the order satisfies |Hi+1| = 2|Hi| by part (c). Since G is a finite group, this process
must terminate at some finite step k, this gives Hk = G, so that G has order equals
to 2k|H0| = 2k.


