THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 3 Problems
 29th January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. Let $H \leq G$ be a subgroup, prove that for any $g \in G, g H g^{-1}:=\left\{g x g^{-1}: x \in H\right\}$ is also a subgroup of G. Moreover, if H is finite, then H and gHg^{-1} have the same order.
2. Let H, K be subgroups of G, are $H \cap K$ and $H \cup K$ subgroups of G ? Prove it if it is true, otherwise provide a counter-example.
3. Recall from HW1 compulsory Q4, we can construct the product group $G_{1} \times G_{2}$ of two groups G_{1}, G_{2}. Prove that if $H \leq G_{1}$ and $K \leq G_{2}$ are subgroups, then $H \times K \subset G_{1} \times G_{2}$ is a subgroup.
4. Let G be a group, and define the subset $Z:=\{g \in G: g x=x g, \forall x \in G\}$, prove that Z is always a subgroup of G, this subgroup is called the center of G.
5. Let $H \subset G$ be a subgroup, define the subset $N_{G}(H):=\left\{g \in G: g H g^{-1}=H\right\}$, prove that $N_{G}(H)$ is a subgroup. This subgroup is called the normalizer of H in G.
6. Recall that a subset H of G is a subgroup if and only if the following two conditions hold:
(a) $x, y \in H$ implies $x y \in H$, and
(b) $x \in H$ implies $x^{-1} \in H$.

Give a counter-example to show that (b) cannot be dropped, i.e. find a subset H of some group G that is closed under multiplication, but H is not a subgroup of G.
7. Following Q 5 , prove that (b) follows from (a) in the case where G is finite.
8. Recall that every subgroup of a cyclic subgroup is cyclic. Determine whether the following statement is true: if every proper subgroup of G is cyclic, then G is cyclic.
9. List all subgroups of $\mathbb{Z}_{8}, \mathbb{Z}_{11}$ and \mathbb{Z}_{12}.
10. Prove that a group G is finite if and only if it has finitely many subgroups.
11. Show that it is impossible for a group to be a union of two proper subgroups.
12. Let G be a finite group of order n such that every non-identity element has order 2 .
(a) Show that G is abelian.
(b) Let H be a proper subgroup of G (a subgroup that is not equal to the whole of G), take $g \notin H$, show that $H \cup g H$ is a subgroup of G.
(c) Show that $|H \cup g H|=2|H|$.
(d) Prove that $n=2^{k}$ for some integer k.

