THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 Honours Algebraic Structures 2022-23 Tutorial 2 Solutions 22nd January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. (a) To show that two permutations are equal, it can be verified by how they act on $\{1, ..., n\}$. Write $\sigma_1 = \sigma(i_1 i_2 \cdots i_k) \sigma^{-1}$ and $\sigma_2 = (\sigma(i_1) \cdots \sigma(i_k))$, let $x \in \{1, ..., n\}$. If $x = \sigma(i_l)$, then $\sigma_1(x) = \sigma(i_1 i_2 \cdots i_k)(i_l) = \sigma(i_{l+1})$, here the subscript is understood as numbers modulo k, i.e. if l + 1 = k + 1, then $i_{l+1} = i_1$. Meanwhile $\sigma_2(x) = \sigma(i_{l+1})$ by definition of cycle, so $\sigma_1(x) = \sigma_2(x)$. Otherwise, if $x \notin \{\sigma(i_1), ..., \sigma(i_k)\}$, then $\sigma^{-1}(x) \notin \{i_1, ..., i_k\}$, so it is fixed by the k-cycle, so $\sigma_1(x) = \sigma\sigma^{-1}(x) = x$, while $\sigma_2(x) = x$ for the same reason. So in any case, $\sigma_1 = \sigma_2$.

In fact, the proposition holds more generally for a product of disjoint cycles.

- (b) By part (a), it suffices to find a permutation σ such that $\sigma(i_l) = j_l$ for i = 1, ..., l. This can always be achieved since all i_l 's and j_l 's are distinct. So it is possible to define $\sigma(i_l) = j_l$ and extend it to a function from $\{1, ..., n\}$ to itself.
- (c) There are $P_k^n = \frac{n!}{(n-k)!}$ many ways of permuting k numbers from $\{1, ..., n\}$. Given any such permutation, one can form a k-cycle, which is not unique since cyclic permuting the entries give the same k-cycle as element in S_n , therefore, each kcycle is counted k many times. For example, (123), (231) and (312) are there representations of the same 3-cycles. So the number of k-cycles should be $\frac{1}{k}P_k^n = \frac{n!}{(n-k)!k}$.
- Recall that from the lectures, we have seen that in Z_k, an element *i* is a generator if and only if gcd(*i*, *k*) = 1. Since a *k*-cycle σ has order *k*, it follows that ⟨σ⟩ = {id, σ, ..., σ^{k-1}}. Identifying ⟨σ⟩ ≅ Z_k, the statement now reads, σⁱ is a generator if and only if σⁱ is a *k*-cycle.

(\Leftarrow) If σ^i is a k-cycle, then $\langle \sigma^i \rangle$ has cardinality k, and it is clearly a subset of $\langle \sigma \rangle$, which has the same cardinality. Therefore $\langle \sigma^i \rangle = \langle \sigma \rangle$ and so σ^i is a generator.

 (\Rightarrow) If σ^i is a generator, then in particular it has order k. Now an element of order k may not necessarily be a k-cycle. If σ^i was not a k-cycle, then it is a product of shorter disjoint cycles whose lengths have least common multiple equals to k (see HW2 Q4). Since σ^i is a generator, $(\sigma^i)^l = \sigma$ is a k-cycle, this gives a contradiction since $(\sigma^i)^l$ is a product of powers of disjoint cycles, so it is itself a product of disjoint cycles whose lengths are smaller than k.

3. By the result of HW2 Q4, by expressing a permutation as disjoint cycles, it has order equal to the lcm of the lengths of the cycles. So an element has order equal to p prime, precisely when this lcm is equal to p. Therefore, only cycles of lengths 1 or p can appear, so it is a product of disjoint p-cycles.

- 4. For n = 2k, since $s^2 = id$, we have $s = s^{-1}$. We also have $srs^{-1} = r^{-1}$, so inductively $sr^ks^{-1} = r^{-k} = r^k$, so r^k commutes with s. On the other hand, $r^jr^kr^{-j} = r^{j+k-j} = r^k$, so r^k also commutes with r^j for arbitrary j. Finally, for r^is , note that $(r^is)r^k(r^is)^{-1} = r^isr^ks^{-1}r^{-i} = r^ir^{-k}r^{-i} = r^{-k} = r^k$. So r^k commutes with every element in D_{2k} .
- 5. $r^2 sr^6 sr^3 = r^2 (sr^6)(sr^3) = r^2 (r^{-6}s)(sr^3) = r^{-4}s^2r^3 = r^{-1}.$ $(sr^4)sr^3 (sr^2) = (r^{-4}s)sr^3 (r^{-2}s) = r^{-4}r^3r^{-2}s = r^{-3}s.$
- 6. For $n \ge 3$, they are not even abelian. For example, in D_n , $sr = r^{-1}s \ne rs$ since $r \ne r^{-1}$ for $n \ge 3$. And in S_n , (12)(23) = (312) and (23)(12) = (132) are not equal.

Another reason is that these groups do not contain elements that have the same order as the group. In D_n , elements have orders either dividing n or 2. Meanwhile, in S_n , elements have orders given by lcm of partitions of n, which is nowhere close to $|S_n| = n!$.