THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2022-23
 Tutorial 2 Solutions
 22nd January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. (a) To show that two permutations are equal, it can be verified by how they act on $\{1, \ldots, n\}$. Write $\sigma_{1}=\sigma\left(i_{1} i_{2} \cdots i_{k}\right) \sigma^{-1}$ and $\sigma_{2}=\left(\sigma\left(i_{1}\right) \cdots \sigma\left(i_{k}\right)\right)$, let $x \in\{1, \ldots, n\}$. If $x=\sigma\left(i_{l}\right)$, then $\sigma_{1}(x)=\sigma\left(i_{1} i_{2} \cdots i_{k}\right)\left(i_{l}\right)=\sigma\left(i_{l+1}\right)$, here the subscript is understood as numbers modulo k, i.e. if $l+1=k+1$, then $i_{l+1}=i_{1}$. Meanwhile $\sigma_{2}(x)=\sigma\left(i_{l+1}\right)$ by definition of cycle, so $\sigma_{1}(x)=\sigma_{2}(x)$. Otherwise, if $x \notin\left\{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right\}$, then $\sigma^{-1}(x) \notin\left\{i_{1}, \ldots, i_{k}\right\}$, so it is fixed by the k-cycle, so $\sigma_{1}(x)=\sigma \sigma^{-1}(x)=x$, while $\sigma_{2}(x)=x$ for the same reason. So in any case, $\sigma_{1}=\sigma_{2}$.
In fact, the proposition holds more generally for a product of disjoint cycles.
(b) By part (a), it suffices to find a permutation σ such that $\sigma\left(i_{l}\right)=j_{l}$ for $i=1, \ldots, l$. This can always be achieved since all i_{l} 's and j_{l} 's are distinct. So it is possible to define $\sigma\left(i_{l}\right)=j_{l}$ and extend it to a function from $\{1, \ldots, n\}$ to itself.
(c) There are $P_{k}^{n}=\frac{n!}{(n-k)!}$ many ways of permuting k numbers from $\{1, \ldots, n\}$. Given any such permutation, one can form a k-cycle, which is not unique since cyclic permuting the entries give the same k-cycle as element in S_{n}, therefore, each k cycle is counted k many times. For example, (123), (231) and (312) are there representations of the same 3 -cycles. So the number of k-cycles should be $\frac{1}{k} P_{k}^{n}=$ $\frac{n!}{(n-k)!k}$.
2. Recall that from the lectures, we have seen that in \mathbb{Z}_{k}, an element i is a generator if and only if $\operatorname{gcd}(i, k)=1$. Since a k-cycle σ has order k, it follows that $\langle\sigma\rangle=\left\{\mathrm{id}, \sigma, \ldots, \sigma^{k-1}\right\}$. Identifying $\langle\sigma\rangle \cong \mathbb{Z}_{k}$, the statement now reads, σ^{i} is a generator if and only if σ^{i} is a k cycle.
(\Leftarrow) If σ^{i} is a k-cycle, then $\left\langle\sigma^{i}\right\rangle$ has cardinality k, and it is clearly a subset of $\langle\sigma\rangle$, which has the same cardinality. Therefore $\left\langle\sigma^{i}\right\rangle=\langle\sigma\rangle$ and so σ^{i} is a generator.
(\Rightarrow) If σ^{i} is a generator, then in particular it has order k. Now an element of order k may not necessarily be a k-cycle. If σ^{i} was not a k-cycle, then it is a product of shorter disjoint cycles whose lengths have least common multiple equals to k (see HW2 Q4). Since σ^{i} is a generator, $\left(\sigma^{i}\right)^{l}=\sigma$ is a k-cycle, this gives a contradiction since $\left(\sigma^{i}\right)^{l}$ is a product of powers of disjoint cycles, so it is itself a product of disjoint cycles whose lengths are smaller than k.
3. By the result of HW2 Q4, by expressing a permutation as disjoint cycles, it has order equal to the lcm of the lengths of the cycles. So an element has order equal to p prime, precisely when this lcm is equal to p. Therefore, only cycles of lengths 1 or p can appear, so it is a product of disjoint p-cycles.
4. For $n=2 k$, since $s^{2}=\mathrm{id}$, we have $s=s^{-1}$. We also have $s r s^{-1}=r^{-1}$, so inductively $s r^{k} s^{-1}=r^{-k}=r^{k}$, so r^{k} commutes with s. On the other hand, $r^{j} r^{k} r^{-j}=r^{j+k-j}=r^{k}$, so r^{k} also commutes with r^{j} for arbitrary j. Finally, for $r^{i} s$, note that $\left(r^{i} s\right) r^{k}\left(r^{i} s\right)^{-1}=$ $r^{i} s r^{k} s^{-1} r^{-i}=r^{i} r^{-k} r^{-i}=r^{-k}=r^{k}$. So r^{k} commutes with every element in $D_{2 k}$.
5. $r^{2} s r^{6} s r^{3}=r^{2}\left(s r^{6}\right)\left(s r^{3}\right)=r^{2}\left(r^{-6} s\right)\left(s r^{3}\right)=r^{-4} s^{2} r^{3}=r^{-1}$.
$\left(s r^{4}\right) s r^{3}\left(s r^{2}\right)=\left(r^{-4} s\right) s r^{3}\left(r^{-2} s\right)=r^{-4} r^{3} r^{-2} s=r^{-3} s$.
6. For $n \geq 3$, they are not even abelian. For example, in $D_{n}, s r=r^{-1} s \neq r s$ since $r \neq r^{-1}$ for $n \geq 3$. And in $S_{n},(12)(23)=(312)$ and $(23)(12)=(132)$ are not equal.
Another reason is that these groups do not contain elements that have the same order as the group. In D_{n}, elements have orders either dividing n or 2 . Meanwhile, in S_{n}, elements have orders given by lcm of partitions of n, which is nowhere close to $\left|S_{n}\right|=n$!.
