THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 Honours Algebraic Structures 2023-24 Tutorial 2 Problems 22nd January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. (a) Let $(i_1 i_2 \cdots i_k) \in S_n$ be a k-cycle, and $\sigma \in S_n$ an arbitrary permutation, prove that

$$\sigma(i_1i_2\cdots i_k)\sigma^{-1}=(\sigma(i_1)\sigma(i_2)\cdots \sigma(i_k)).$$

- (b) Suppose that $\sigma_i := (i_1 i_2 \cdots i_k)$ and $\sigma_j := (j_1 j_2 \cdots j_k)$ are k-cycles in S_n , prove that there exists some $\sigma \in S_n$ so that $\sigma_j = \sigma \sigma_i \sigma^{-1}$
- (c) Show that there are $\frac{n!}{(n-k)!k}$ many k-cycles in S_n .
- 2. Let σ be a k-cycle, prove that σ^i is also a k-cycle if and only if gcd(i, k) = 1.
- 3. Let p be a prime number, prove that a permutation in S_n has order p if and only if it is a product of commuting p-cycles. Is the statement true if p is not assumed to be prime?
- 4. Let D_n be the *n*-th dihedral group, let $r \in D_n$ be a rotation so that $r^n = \text{id}$, and let $s \in D_n$ be any reflection. It is known that $srs = r^{-1}$ (see optional Q6 of HW2). Suppose n = 2k is even, prove that r^k commutes with every element in D_n .
- 5. Recall that every element in D_n can be expressed as either r^i for $0 \le 1 < n$ or $r^j s$ for $0 \le j < n$. Compute which element are $r^2 s r^6 s r^3$ and $s r^4 s r^3 s r^2$ in D_7 using the relation $sr = r^{-1}s$.
- 6. Explain why D_n and S_n are not cyclic.