THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 2 Problems
 22nd January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. (a) Let $\left(i_{1} i_{2} \cdots i_{k}\right) \in S_{n}$ be a k-cycle, and $\sigma \in S_{n}$ an arbitrary permutation, prove that

$$
\sigma\left(i_{1} i_{2} \cdots i_{k}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \cdots \sigma\left(i_{k}\right)\right) .
$$

(b) Suppose that $\sigma_{i}:=\left(i_{1} i_{2} \cdots i_{k}\right)$ and $\sigma_{j}:=\left(j_{1} j_{2} \cdots j_{k}\right)$ are k-cycles in S_{n}, prove that there exists some $\sigma \in S_{n}$ so that $\sigma_{j}=\sigma \sigma_{i} \sigma^{-1}$
(c) Show that there are $\frac{n!}{(n-k)!k}$ many k-cycles in S_{n}.
2. Let σ be a k-cycle, prove that σ^{i} is also a k-cycle if and only if $\operatorname{gcd}(i, k)=1$.
3. Let p be a prime number, prove that a permutation in S_{n} has order p if and only if it is a product of commuting p-cycles. Is the statement true if p is not assumed to be prime?
4. Let D_{n} be the n-th dihedral group, let $r \in D_{n}$ be a rotation so that $r^{n}=\mathrm{id}$, and let $s \in D_{n}$ be any reflection. It is known that $s r s=r^{-1}$ (see optional Q6 of HW2). Suppose $n=2 k$ is even, prove that r^{k} commutes with every element in D_{n}.
5. Recall that every element in D_{n} can be expressed as either r^{i} for $0 \leq 1<n$ or $r^{j} s$ for $0 \leq j<n$. Compute which element are $r^{2} s r^{6} s r^{3}$ and $s r^{4} s r^{3} s r^{2}$ in D_{7} using the relation $s r=r^{-1} s$.
6. Explain why D_{n} and S_{n} are not cyclic.

