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• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. Order of an element in a group

Recall that for g ∈ G, |g| or ord (g) is smallest positive integer n (if exists) so that gn = e.
If such integer does not exist, we write |g| = ∞ and say g has infinite order. Every element
in a finite group has finite order by pigeonhole principle and cancellation law. In general,
an element of an infinite group can have order either finite or infinite. For example, in the
mulitplicative group of complex number (C×, ·), the number 2 has infinite order, since 2n ̸= 1
for any n > 0; whereas the roots of unity, e2πi/n has order n which is finite. From this example,
we can also see there exists infinite groups in which every element has finite order, for example
G = {ζ ∈ C×| ζk = 1 for some k ∈ Z} is a subgroup of C×, since if ζ, η ∈ G, then there exists
n,m ∈ Z so that ζn = 1 and ηm = 1, then (ζη)nm = 1 and so ζη ∈ G.

The order of an element and the order of the group are related by a corollary of Lagrange’s
theorem, which will be discussed in week 4 (c.f. section 4.3 in the lecture notes). The corollary
says that |g| divides |G| for any g ∈ G. We will give a simple proof of this fact in the case when
G is abelian, that does not rely on the techniques discussed in week 4.

Proposition. Let G be a finite abelian group, then any g ∈ G has order dividing |G|.
Proof. We write G = {g1, g2, ..., gn} where n = |G|, and consider for each g ∈ G the funciton
ϕ : G → G by ϕ(x) = gx, where we multiply g on the left to any element in G. This function
ϕ is bijective because ϕ(x) = ϕ(y) gives gx = gy, whence cancellation law implies x = y. For
sets with the same cardinality, injectivity implies bijectivity. Therefore, we have

n∏
i=1

gi =
n∏

i=1

(ggi) = gn
n∏

i=1

gi.

Here the first equality holds because the product is taken over all elements in G, and is indepen-
dent of the order in which the elements are multiplied as G is abelian. Therefore by cancellation
law again we have gn = e. Then by proposition 2.1.2, we have |g| divides n = |G|. ■

It is instructive to figure out what are orders some of elements in specific groups. Recall the
group (Zn,+) where Zn = {0, 1, 2, ..., n− 1} equipped with group operation given by addition
mod n. We have the following result on the order of an element in Zn.

Proposition. Let k ∈ Zn, then ord (k) = lcm(k, n)/k = n/ gcd(k, n).

Proof. By definition ord (k) is the smallest positive integer so that ord (k)k ≡ 0 (mod n),
therefore ord (k)k is the smallest multiple of k that is also a multiple of n, so ord (k)k =
lcm(k, n). On the other hand, suppose that mk ≡ 0 (mod n), in other words, n divides mk.
This is equivalent to n dividing gcd(mk,mn) = m gcd(k, n) ⇐⇒ n/ gcd(k, n) divides m. In
particular, putting m = ord (k) shows that n/ gcd(k, n) divides ord (k). Meanwhile proposition
2.1.2 implies ord (k) divides gcd(k, n), so they are equal. ■



Remark. The identity gcd(k, n) · lcm(k, n) = kn holds for arbitrary k, n, what we have done
above is a fancy way to showing this equality. One can prove this in a more straightforward
manner by writing k, n in terms of prime factorizations, k = pi11 . . . pill and n = pj11 . . . pjll .
Then gcd(k, n) = p

min{i1,j1}
1 . . . p

min{il,jl}
l and lcm(k, n) = p

max{i1,j1}}
1 . . . p

max{il,jl}
l . Then the

equality follows from min{a, b}+max{a, b} = a+ b.

In particular, as a corollary of the proposition above, whenever gcd(k, n) = 1, we have
ord (k) = n, therefore by proposition 2.1.3, we have ⟨k⟩ = {0, k, 2k, ..., (n − 1)k} has car-
dinality n, so it must be the whole group Zn. This shows that Zn is cyclic, and any k with
gcd(k, n) = 1 is a generator.

2. Cayley Table of a finite group

The multiplication table or the Cayley table of a finite group G is a table arranging all possible
multiplications of two elements in G. For example, for a group G = {a, b, c, d} consisting of 4
elements, the multiplication table would be constructed as below.

· a b c d
a aa ab ac ad
b ba bb bc bd
c ca cb cc cd
d da db dc dd

The first observation is that the group is abelian, precisely when gh = hg for all g, h ∈ G,
therefore the Cayley table would appear to be symmetric along the diagonal. On the other hand,
since in any group, there is a unique identity element e where eg = ge = g for all g ∈ G,
there will be a unique row and unique column which is the exact copy of the indexing row and
column. For example, in the table below, the group is Z5 = {0, 1, 2, 3, 4}, note that the first
row and the first column (labelled in red), corresponding to multiplication with the identity, are
exactly the copy of the indexing row and columns.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Recall that when we multiply an element g to any element in G on the left or on the right, we
get a bijection from G to itself, i.e. it is a permutation of the elements in G. So each row and
each column of the Cayley table is a unique permutation of G. Notice that in the above case,
the group is cyclic, and the rows and columns are given by cyclic permutations.

Given an unfamiliar group, it is a manageable task to understand its structure by computing
its Cayley table. It is possible to verify that two groups are isomorphic or not by comparing
their Cayley tables.

For example, consider the following groups G1 = Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)},
where the group operation is given by entry-wise addition modulo 2, i.e. (a, b) + (c, d) =
(a+ c mod 2, b+ d mod 2). And G2 = Z×

12, the multiplicative group of integers modulo 12.
This group consists of those integers in {0, 1, 2, ..., 12} which are invertible modulo 12, this is
equivalent to picking those that are coprime to 12. So in our case Z×

12 = {1, 5, 7, 11}, one can



explicitly compute its multiplication: e.g. 52 = 25 ≡ 1 mod 12. The Cayley tables for G1 and
G2 are given below.

+ (0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

· 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

The two tables are the same under the identification (0, 0) ↔ 1, (1, 0) ↔ 5, (0, 1) ↔ 7 and
(1, 1) ↔ 11. Therefore one can conclude that the two groups are isomorphic (having the same
group structures).


