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• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

Compulsory Part

1. (a) Yes. Let ia, ib ∈ iR where a, b ∈ R, then ia+(ib)−1 = ia+(−ib) = i(a− b) ∈ iR.

(b) Yes, let z1, z2 be m-th roots of unity, then zm1 = zm2 = 1. Consider (z1z−1
2 )m =

zm1 /zm2 = 1, so z1z
−1
2 is again an m-th root of unity.

(c) No. Let A,B ∈ GL(n,R) be matrices with determinant −1, then det(AB) =
det(A) det(B) = (−1)2 = 1. So the set of matrices with determinant 1 is not
closed under multiplication, therefore would not form a subgroup.

(d) Yes, let A,B ∈ {M ∈ GL(n,R) : MTM = I}, then for the matrix AB−1,
consider (AB−1)T (AB−1) = (B−1)TATAB−1 = (B−1)TB−1 = (BT )−1B−1 =
(BBT )−1 = I . Here, we have used the facts that the inverse of tranpose is equal
to the transpose of inverse, and that left inverse is equal to right inverse. The above
calculation shows that M = AB−1 satisfies MTM = I , so it is closed under matrix
multiplication.

2. (a) The generators of Z20 consists of those numbers that are coprime to 20, so they are
1, 3, 7, 9, 11, 13, 17 and 19.

(b) Recall that any subgroups of a cyclic group is cyclic, so it is of the form ⟨k⟩. By
proposition 3.2.6, the subgroup ⟨k⟩ only depends on gcd(k, 20). The possible gcds
are 1, 2, 4, 5, 10, 20.
For gcd(k, 20) = 1, we get the subgroup Z20, this is described in part (a).
For gcd(k, 20) = 2, we get ⟨2⟩ ∼= Z10 ≤ Z20. The generators are 2, 6, 10, 14, 18.
For gcd(k, 20) = 4, we get ⟨4⟩ ∼= Z5 ≤ Z20. The generators are 4, 8, 12, 16.
For gcd(k, 20) = 5, we get ⟨5⟩ ∼= Z4 ≤ Z20. The generators are 5, 15.
For gcd(k, 20) = 10, we get ⟨10⟩ ∼= Z2 ≤ Z20. The generator is 10.
For gcd(k, 20) = 20, we get ⟨0⟩ = {e} ≤ Z20. The generator is 0.

3. Since H is a subgroup of G if and only if it is closed under multiplication and closed under
taking inverse. It suffices to prove that when H is finite, closedness under multiplication
implies closedness under taking inverse. Let a ∈ H be an element, then since H is
closed under multiplication, the subset {an : n ∈ Z>0} ⊂ H and is finite. Therefore by
pigeonhole principle, there are i > j such that aj = ai, thus ai−j = e, i.e. a has finite
order, say |a| = m. Then am−1 = ama−1 = a−1, thus a−1 ∈ {an : n ∈ Z>0} ⊂ H . We
have shown that H is closed under taking inverse, so it is a subgroup.



4. Denote HK := {hk : h ∈ H, k ∈ K}. It suffices to prove that for any h1k1, h2k2 ∈
HK, we have (h1k1)(h2k2)

−1 ∈ HK. This is clear because G is abelian, we have
(h1k1)(h2k2)

−1 = h1k1k
−1
2 h−1

2 = h1h
−1
2 k1k

−1
2 , since H,K are subgroups, h1h

−1
2 ∈ H

and k1k
−1
2 ∈ K. So that (h1k1)(h2k2)

−1 = h1h
−1
2 k1k

−1
2 ∈ HK as desired.

For a counter-example of the statement in the case when G is non-abelian, consider
G = D3 = {e, r, r2, s, sr, sr2} and take H = {e, s}, K = {e, rs}. Then HK =
{e, s, rs, srs}, here srs = r−1ss = r−1 = r2. Note that (rs)s = r ̸∈ HK, so it is not a
subgroup.

5. See solution to Tutorial 4 Q1.

6. Let a, b ∈ H , then a, b have finite orders, say |a| = m and |b| = n. We have (ab−1)mn =
amn(bmn)−1 = e, where in the first equality we have used the fact that G is abelian. So
ab−1 has order at most mn, which is finite, i.e. ab−1 ∈ H . This subgroup H is called the
torsion subgroup of G.

Optional Part

1. (a) Yes. Let r, s ∈ Q, and consider er, es ∈ eQ. Then (er) + (es)−1 = er − es =
e(r − s) ∈ eQ. So eQ is a subgroup.

(b) No. π + π2 is not equal to πk for any k ∈ Z, therefore the subset {πn : n ∈ Z} is
not closed under group operation, so it is not a subgroup.

(c) Yes. Write the set as

H =



λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 ∈ GL(n,R) : λ1, ..., λn ̸= 0

 .

Denote the diagonal matrix as diag(λ1, ..., λn). Then for A,B ∈ H , write A =
diag(λ1, ..., λn) and B = diag(η1, ..., ηn), we have AB−1 = diag(λ1η

−1
1 , ..., λnη

−1
n ).

Therefore AB−1 ∈ H , since each of λ1η
−1
1 , ..., λnη

−1
n are non-zero.

(d) Yes. Let H be the set of matrices with determinant ±1. Let A,B ∈ H , then
det(AB−1) = det(A) det(B)−1 is either 1 or −1, so AB−1 ∈ H again.

2. We may write S3 = {e, (12), (13), (23), (123), (132)}. The identity e is conventionally
defined as the empty product. First note that (132) = (123)2. We have (123)(12) = (13).
Therefore we also have (23) = (12)(13)(12) = (12)(123).

Try to interpret the above in terms of D3 = ⟨r, s⟩. There is an isomorphism D3
∼= S3,

where r ↔ (123) and s ↔ (12).

3. A subgroup of order 5 and 3 are in particular groups of prime orders. So they must be
cyclic. Thus we can start by considering elements of order 5 and 3 respectively.

By tutorial 2 Q3, elements of order 5 in S6 are precisely the 5-cycles, by tutorial 2 Q1c,
there are 6!/5 = 144 many 5-cycles. Each 5-cycle generates a subgroup of order 5 in
S6 but they need not be distinct. As each subgroup has exactly 4 generators (there are 4



numbers in {0, 1, 2, 3, 4} that are coprime to 5.) There are 144/4 = 36 distinct subgroups
of order 5.

Similarly, the elements of order 3 in S6 are either 3-cycles or (3, 3) − cycles (i.e. cycles
of the form (abc)(def).) There are 6!/(3! · 3) = 40 many 3-cycles and 6!/(32 · 2!) = 40
many (3, 3)-cycles in S6. Each element generates a subgroup of order 3, but similar to
above, they are double-counted, because the group Z3 has exactly 2 generators. So in
total there are (40 + 40)/2 = 40 many subgroups of order 3.

4. Consider H = ⟨(12), (34)⟩ = {e, (12), (34), (12)(34)} ≤ S4. It has order 4 and is not
cyclic since (12)2 = (34)2 = (12)2(34)2 = e.

5. (a) If n is odd, consider H = ⟨r2, s⟩. Write n = 2k − 1, then (r2)k = r2k = r ∈ H ,
therefore Dn = ⟨r, s⟩ ≤ H . So H = Dn and |H| = 2n.

(b) If n is even, write n = 2k, since Dn = {e, r, r2, ..., r2k−1, s, sr, ..., sr2k−1}. It is
obvious that {e, r2, r4, ..., r2k−2, s, sr2, ..., sr2k−2} ⊂ ⟨r2, s⟩. On the other hand, a
general element in ⟨r2, s⟩ is a product of s and r2i. In Dn, we have the relation r2s =
sr−2. In particular, given a general element in ⟨r2, s⟩, we can move all of the r2i’s
together, so that it has the form r

∑
j 2ijsl, now sl is either s or e, and r

∑
j 2ij is an even

power of r. This shows that the element lies in {e, r2, r4, ..., r2k−2, s, sr2, ..., sr2k−2}.
So |⟨r2, s⟩| = n.

6. See the solution to Tutorial 3 Q10.


