THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Homework 3 Solutions
 8th February 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. (a) Yes. Let $i a, i b \in i \mathbb{R}$ where $a, b \in \mathbb{R}$, then $i a+(i b)^{-1}=i a+(-i b)=i(a-b) \in i \mathbb{R}$.
(b) Yes, let z_{1}, z_{2} be m-th roots of unity, then $z_{1}^{m}=z_{2}^{m}=1$. Consider $\left(z_{1} z_{2}^{-1}\right)^{m}=$ $z_{1}^{m} / z_{2}^{m}=1$, so $z_{1} z_{2}^{-1}$ is again an m-th root of unity.
(c) No. Let $A, B \in G L(n, \mathbb{R})$ be matrices with determinant -1 , then $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)=(-1)^{2}=1$. So the set of matrices with determinant 1 is not closed under multiplication, therefore would not form a subgroup.
(d) Yes, let $A, B \in\left\{M \in G L(n, \mathbb{R}): M^{T} M=I\right\}$, then for the matrix $A B^{-1}$, consider $\left(A B^{-1}\right)^{T}\left(A B^{-1}\right)=\left(B^{-1}\right)^{T} A^{T} A B^{-1}=\left(B^{-1}\right)^{T} B^{-1}=\left(B^{T}\right)^{-1} B^{-1}=$ $\left(B B^{T}\right)^{-1}=I$. Here, we have used the facts that the inverse of tranpose is equal to the transpose of inverse, and that left inverse is equal to right inverse. The above calculation shows that $M=A B^{-1}$ satisfies $M^{T} M=I$, so it is closed under matrix multiplication.
2. (a) The generators of \mathbb{Z}_{20} consists of those numbers that are coprime to 20 , so they are $1,3,7,9,11,13,17$ and 19.
(b) Recall that any subgroups of a cyclic group is cyclic, so it is of the form $\langle k\rangle$. By proposition 3.2.6, the subgroup $\langle k\rangle$ only depends on $\operatorname{gcd}(k, 20)$. The possible gcds are $1,2,4,5,10,20$.
For $\operatorname{gcd}(k, 20)=1$, we get the subgroup \mathbb{Z}_{20}, this is described in part (a).
For $\operatorname{gcd}(k, 20)=2$, we get $\langle 2\rangle \cong \mathbb{Z}_{10} \leq Z_{20}$. The generators are $2,6,10,14,18$.
For $\operatorname{gcd}(k, 20)=4$, we get $\langle 4\rangle \cong \mathbb{Z}_{5} \leq \mathbb{Z}_{20}$. The generators are $4,8,12,16$.
For $\operatorname{gcd}(k, 20)=5$, we get $\langle 5\rangle \cong \mathbb{Z}_{4} \leq \mathbb{Z}_{20}$. The generators are 5,15 .
For $\operatorname{gcd}(k, 20)=10$, we get $\langle 10\rangle \cong \mathbb{Z}_{2} \leq \mathbb{Z}_{20}$. The generator is 10 .
For $\operatorname{gcd}(k, 20)=20$, we get $\langle 0\rangle=\{e\} \leq \mathbb{Z}_{20}$. The generator is 0 .
3. Since H is a subgroup of G if and only if it is closed under multiplication and closed under taking inverse. It suffices to prove that when H is finite, closedness under multiplication implies closedness under taking inverse. Let $a \in H$ be an element, then since H is closed under multiplication, the subset $\left\{a^{n}: n \in \mathbb{Z}_{>0}\right\} \subset H$ and is finite. Therefore by pigeonhole principle, there are $i>j$ such that $a^{j}=a^{i}$, thus $a^{i-j}=e$, i.e. a has finite order, say $|a|=m$. Then $a^{m-1}=a^{m} a^{-1}=a^{-1}$, thus $a^{-1} \in\left\{a^{n}: n \in \mathbb{Z}_{>0}\right\} \subset H$. We have shown that H is closed under taking inverse, so it is a subgroup.
4. Denote $H K:=\{h k: h \in H, k \in K\}$. It suffices to prove that for any $h_{1} k_{1}, h_{2} k_{2} \in$ $H K$, we have $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)^{-1} \in H K$. This is clear because G is abelian, we have $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)^{-1}=h_{1} k_{1} k_{2}^{-1} h_{2}^{-1}=h_{1} h_{2}^{-1} k_{1} k_{2}^{-1}$, since H, K are subgroups, $h_{1} h_{2}^{-1} \in H$ and $k_{1} k_{2}^{-1} \in K$. So that $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)^{-1}=h_{1} h_{2}^{-1} k_{1} k_{2}^{-1} \in H K$ as desired.

For a counter-example of the statement in the case when G is non-abelian, consider $G=D_{3}=\left\{e, r, r^{2}, s, s r, s r^{2}\right\}$ and take $H=\{e, s\}, K=\{e, r s\}$. Then $H K=$ $\{e, s, r s, s r s\}$, here $s r s=r^{-1} s s=r^{-1}=r^{2}$. Note that $(r s) s=r \notin H K$, so it is not a subgroup.
5. See solution to Tutorial 4 Q 1 .
6. Let $a, b \in H$, then a, b have finite orders, say $|a|=m$ and $|b|=n$. We have $\left(a b^{-1}\right)^{m n}=$ $a^{m n}\left(b^{m n}\right)^{-1}=e$, where in the first equality we have used the fact that G is abelian. So $a b^{-1}$ has order at most $m n$, which is finite, i.e. $a b^{-1} \in H$. This subgroup H is called the torsion subgroup of G.

Optional Part

1. (a) Yes. Let $r, s \in \mathbb{Q}$, and consider er, es $\in e \mathbb{Q}$. Then $(e r)+(e s)^{-1}=e r-e s=$ $e(r-s) \in e \mathbb{Q}$. So $e \mathbb{Q}$ is a subgroup.
(b) No. $\pi+\pi^{2}$ is not equal to π^{k} for any $k \in \mathbb{Z}$, therefore the subset $\left\{\pi^{n}: n \in \mathbb{Z}\right\}$ is not closed under group operation, so it is not a subgroup.
(c) Yes. Write the set as

$$
H=\left\{\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right) \in G L(n, \mathbb{R}): \lambda_{1}, \ldots, \lambda_{n} \neq 0\right\}
$$

Denote the diagonal matrix as $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then for $A, B \in H$, write $A=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $B=\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{n}\right)$, we have $A B^{-1}=\operatorname{diag}\left(\lambda_{1} \eta_{1}^{-1}, \ldots, \lambda_{n} \eta_{n}^{-1}\right)$. Therefore $A B^{-1} \in H$, since each of $\lambda_{1} \eta_{1}^{-1}, \ldots, \lambda_{n} \eta_{n}^{-1}$ are non-zero.
(d) Yes. Let H be the set of matrices with determinant ± 1. Let $A, B \in H$, then $\operatorname{det}\left(A B^{-1}\right)=\operatorname{det}(A) \operatorname{det}(B)^{-1}$ is either 1 or -1 , so $A B^{-1} \in H$ again.
2. We may write $S_{3}=\{e,(12),(13),(23),(123),(132)\}$. The identity e is conventionally defined as the empty product. First note that $(132)=(123)^{2}$. We have $(123)(12)=(13)$. Therefore we also have $(23)=(12)(13)(12)=(12)(123)$.
Try to interpret the above in terms of $D_{3}=\langle r, s\rangle$. There is an isomorphism $D_{3} \cong S_{3}$, where $r \leftrightarrow$ (123) and $s \leftrightarrow$ (12).
3. A subgroup of order 5 and 3 are in particular groups of prime orders. So they must be cyclic. Thus we can start by considering elements of order 5 and 3 respectively.
By tutorial 2 Q3, elements of order 5 in S_{6} are precisely the 5 -cycles, by tutorial 2 Q1c, there are $6!/ 5=144$ many 5 -cycles. Each 5 -cycle generates a subgroup of order 5 in S_{6} but they need not be distinct. As each subgroup has exactly 4 generators (there are 4
numbers in $\{0,1,2,3,4\}$ that are coprime to 5 .) There are $144 / 4=36$ distinct subgroups of order 5 .

Similarly, the elements of order 3 in S_{6} are either 3-cycles or $(3,3)$ - cycles (i.e. cycles of the form $(a b c)(d e f)$.) There are $6!/(3!\cdot 3)=40$ many 3 -cycles and $6!/\left(3^{2} \cdot 2!\right)=40$ many (3,3)-cycles in S_{6}. Each element generates a subgroup of order 3, but similar to above, they are double-counted, because the group \mathbb{Z}_{3} has exactly 2 generators. So in total there are $(40+40) / 2=40$ many subgroups of order 3 .
4. Consider $H=\langle(12),(34)\rangle=\{e,(12),(34),(12)(34)\} \leq S_{4}$. It has order 4 and is not cyclic since $(12)^{2}=(34)^{2}=(12)^{2}(34)^{2}=e$.
5. (a) If n is odd, consider $H=\left\langle r^{2}, s\right\rangle$. Write $n=2 k-1$, then $\left(r^{2}\right)^{k}=r^{2 k}=r \in H$, therefore $D_{n}=\langle r, s\rangle \leq H$. So $H=D_{n}$ and $|H|=2 n$.
(b) If n is even, write $n=2 k$, since $D_{n}=\left\{e, r, r^{2}, \ldots, r^{2 k-1}, s, s r, \ldots, s r^{2 k-1}\right\}$. It is obvious that $\left\{e, r^{2}, r^{4}, \ldots, r^{2 k-2}, s, s r^{2}, \ldots, s r^{2 k-2}\right\} \subset\left\langle r^{2}, s\right\rangle$. On the other hand, a general element in $\left\langle r^{2}, s\right\rangle$ is a product of s and $r^{2 i}$. In D_{n}, we have the relation $r^{2} s=$ $s r^{-2}$. In particular, given a general element in $\left\langle r^{2}, s\right\rangle$, we can move all of the $r^{2 i}$, s together, so that it has the form $r^{\sum_{j} 2 i_{j}} s^{l}$, now s^{l} is either s or e, and $r^{\sum_{j} 2 i_{j}}$ is an even power of r. This shows that the element lies in $\left\{e, r^{2}, r^{4}, \ldots, r^{2 k-2}, s, s r^{2}, \ldots, s r^{2 k-2}\right\}$. So $\left|\left\langle r^{2}, s\right\rangle\right|=n$.
6. See the solution to Tutorial 3 Q10.

