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Compulsory Part

1. Let ω = eπi/12 ∈ C, consider ωk = ekπi/12. ord (ωk) is the smallest positive integer n
such that (ωk)n = ωkn = 1. Now eknπi/12 = 1 implies that kn/12 is a multiple of 2, so
that kn is a multiple of 24. The smallest positive integer n is achieved when this multiple
is also smallest. In other words, kn = lcm(24, k).

For example, when k = 8, lcm(24, 8) = 24 and so n = 3. When k = 13, we have
n = 13× 24/13 = 24. When k = 22, we have n = 11× 24/22 = 12. When k = 2078 =
24× 86 + 14 so lcm(2078, 24) = 2078× 24/2, therefore n = 2078× 12/2078 = 12.

2. (a) A =

(
−1 0
0 −1

)
is an element of SL(2,R) since its determinant is (−1)2 = 1. It is

clearly of order 2.

(b) Consider the matrix B =

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
=

(
−1/2 −

√
3/2√

3/2 −1/2

)
. This

matrix clearly has determinant 1 since sin2 x+ cos2 x = 1 for any x. We claim that
this matrix has order 3. This can be verified directly

B3 =

(
−1/2 −

√
3/2√

3/2 −1/2

)3

=

(
−1/2 −

√
3/2√

3/2 −1/2

)(
−1/2

√
3/2

−
√
3/2 −1/2

)
=

(
1 0
0 1

)
.

(Alternatively, one can show that the matrix is diagonlizable over C with eigenvalues
ω1 = e2πi/3 and ω2 = e4πi/3. Therefore it is diagonalizable, i.e. there exists some in-

vertible P such that B = P

(
ω1 0
0 ω2

)
P−1. So we have B3 = P

(
ω3
1 0
0 ω3

2

)
P−1 =

PP−1 = I . Here we have used ω3
1 = ω3

2 = 1.)

(c) C =

(
1 1
0 1

)
has determinant 1, so it is an element of SL(2,R). It has infinite

order, since for any n ∈ Z>0, we have

Cn =

(
1 n
0 1

)
.

This can be shown by an induction argument, as

Cn+1 =

(
1 n
0 1

)(
1 1
0 1

)
=

(
1 n+ 1
0 1

)
.

So Cn ̸= I for any n > 0. It has infinite order.



3. Suppose that a, b ∈ G so that |ab| is finite, say |ab| = n, notice that (ba)n+1 = (ba)(ba)...(ba)︸ ︷︷ ︸
n+1 times

=

b (ab)(ab)...(ab)︸ ︷︷ ︸
n times

a = bea = ba. Therefore by multiplying (ba)−1 to both sides, we obtain

(ba)n = e. Now we claim that (ba)k cannot be the identity for 0 < k < n. Otherwise by
the same argument (swapping b and a), this would imply that (ab)k = e for 0 < k < n,
which contradicts with the definition of n = |ab|. So n is equal to the order of ba as well.

4. Let µ1, µ2 be disjoint cycles, let |µ1| = n1 and |µ2| = n2, then since disjoint cycles
commute, we have (µ1µ2)

lcm(n1,n2) = µ
lcm(n1,n2)
1 ·µlcm(n1,n2)

2 . Now lcm(n1, n2) is a multiple
of both n1, n2, and so when µ1 and µ2 are raised to that power, we get e. Therefore, we
have (µ1µ2)

lcm(n1,n2) = e.

Conversely, if (µ1µ2)
k = µk

1µ
k
2 = e for some k, then we must have µk

1 = µk
2 = e. This

is because µk
1 and µk

2 are always comprised of disjoint cycles, so they are inverse to each
other if and only if they are both trivial. This implies that n1|k and n2|k, so lcm(n1, n2)|k.
Thus lcm(n1, n2) is the minimal power of µ1µ2 that multiplies to e, i.e. it is the order of
µ1µ2.

For the general case, suppose that we have shown that for any r many disjoint cycles
µ1, ..., µr, we have |µ1µ2...µr| = lcm(k1, ..., kr) for ki = |µi|. Given r + 1 many disjoint
cycles now, consider the first r cycles, we have d := |µ1...µr| = lcm(k1, ..., kr) by the
induction hypothesis. Write σ = µ1...µr, we have (σµr+1)

lcm(d,kr+1) = e as before, since
d is the order of σ and kr+1 is the order of µr+1.

Conversely, if (σµr+1)
l = e, then again by the fact that σ and µr+1 are comprised of dis-

joint cycles, this implies that σl = µl
r+1 = e. So that d|l and kr+1|l and so lcm(d, kr+1)|l.

Hence, lcm(d, kr+1) is the smallest positive power of µ1...µr+1 that multiplies to the iden-
tity, and we are done since lcm(d, kr+1) = lcm(k1, ..., kr+1).

5. Let r be the rotation of the plane by 2π/6, and s be any reflection in D6. Then we have
D6 = {e, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5}. Any sri is a reflection and so has order
equals to 2. Meanwhile a rotation has order 2 precisely when it is rotation by π, i.e. the
rotation r3. So there are 7 elements of order 2.

6. Note that e−1 = e. If it was the case that g has no order 2 element, then g ̸= g−1 for all
g ̸= e. And so G can be partitioned into subsets {e}, {g1, g−1

1 }, {g2, g−1
2 }, .... But this

would imply that G has odd order, this is a contradiction. So there must be some order 2
element.

Optional Part

1. We have ab = eab = a6b = a3(a3b) = a3ba3 = ba6 = bae = ba.

2. (a) The group operation given by matrix multiplication on O(2,R) is associative since
it inherits from that of GL(2,R). The identity element is the identity matrix I ,
which is in O(2,R) since IIT = II = I . It remains to show that O(2,R) is
closed under group operation and inversion, if A,B ∈ O(2,R), then (AB)T (AB) =
BT (ATA)B = BTB = I and (AB)(AB)T = A(BBT )AT = AAT = I so AB ∈
O(2,R). And AAT = I implies that I = I−1 = (AAT )−1 = (AT )−1A−1, but
(A−1)T = (AT )−1 so this shows that A−1 ∈ O(2,R).



(b) Take the matrix A described in compulsory Q2a, A = −I is symmetric, so AAT =
A2 = I , so that A ∈ O(2,R) and has order 2.

(c) We have seen that matrix B described in compulsory Q2b is a matrix of order 3,
from the calculation, notice that B2 is in fact BT . So that B3 = B2B = BTB = I ,
thus B ∈ O(2,R).

3. (a) (1325) is a 4-cycle, so it has order 4.

(b) By compulsory Q4 above, this element has order lcm(4, 2) = 4.

(c) The order is lcm(4, 3) = 12.

(d) (32)(46)(37)(35) = (46)(32)(573) = (46)(3572) is a product of disjoint cycles of
lengths 2 and 4, so it has order lcm(4, 2) = 4.

4. (a) i. σ = (1264)(2513) = (14)(16)(12)(23)(21)(25) (in general a k-cycle can be
written as product of transition as follows: (i1i2 · · · ik) = (i1ik)(i1ik−1) · · · (i1i2)).
As for τ , it is easier to write it as product of disjoint cycles first, by chasing
through elements (e.g. 1 is mapped to 4, 4 is mapped to 5, 5 maps back to 1, so
there is a cycle (145) in τ .) Here τ = (145)(376). Then we may break it into
transposition like previously, τ = (15)(14)(36)(37).

ii. From the above, note that (12)(23)(12) = (13), so we have σ = (14)(16)(13)(25) =
(1364)(25).
τ = (145)(376) is computed in part (i).

(b) σ and τ are both (3, 3)-cycles, so they both have order equals to lcm(3, 3) = 3. As
for στ = (164)(253)(145)(376) = (256)(374) is also a (3, 3)-cycles, so it also has
order 3.

5. (a) By compulsory Q4, an element of S5 has order 3 precisely when it is a 3-cycle (also
see Q3 of tutorial 2). Then by Q1c of tutorial 2, there are P 5

3 /3 = 20 many 3-cycles.

(b) An element of order 4 in S6 can either be a 4-cycle of a disjoint product of 4-cycle
and 2-cycle (i.e. a (4, 2)-cycle). There are P 6

4 /4 = 90 many 4-cycles, and note that
4-cycle is in bijection with (4, 2)-cycle, as fixing a 4-cycle leaves no choice for the
remaining two numbers. So there are in total 180 elements of order 4.

(c) Again there are P 7
3 /3 = 70 many 3-cycles in S7, which are precisely the elements of

order 3. It is also possible to have (3, 3)-cycles in S7, there are 1
2
× P 7

3 /3× P 4
3 /3 =

280 many (3, 3)-cycles, since fixing a 3-cycle leaves P 4
3 /3 choices to pick another 3-

cycle out of the remaining 4 numbers, then the 1
2

is to take out the double-counting
from the symmetry of the first and the second 3-cycles (for example, (123)(456)
and (456)(123) are the same permutation, but would be double-counted). Therefore
there are 350 many order 3 elements in S7.

6. (a) We will proceed to prove the statement by induction on k. The case when k = 1 is
tautological. Now suppose the statement has been proven for some k. Then

(srs)k = (srs)k(srs) = srkssrs = srkrs = srk+1s.

Therefore the statement holds for all k ∈ Z>0.



(b) One simple argument is to note that sr is again a reflection, and thus has order 2. So
srsr = e, multiplying r−1 to the right on both sides yields srs = r−1. In particular,
this holds for all reflection s and rotation r.
Thus, it suffices to prove that sr is indeed a reflection. This follows from the intuitive
fact that composition of two rotations is again a rotation. (If one wants to prove
this rigorously, one may try to represent a rotation by a linear transformation, or
as multiplication by a unit complex number by identifying C ∼= R2.) If sr was a
rotation, then sr = r′ and so s = r′r−1, would imply that s is a rotation.


