THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Homework 2 Solutions
 1st February 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. Let $\omega=e^{\pi i / 12} \in \mathbb{C}$, consider $\omega^{k}=e^{k \pi i / 12}$. ord $\left(\omega^{k}\right)$ is the smallest positive integer n such that $\left(\omega^{k}\right)^{n}=\omega^{k n}=1$. Now $e^{k n \pi i / 12}=1$ implies that $k n / 12$ is a multiple of 2 , so that $k n$ is a multiple of 24 . The smallest positive integer n is achieved when this multiple is also smallest. In other words, $k n=\operatorname{lcm}(24, k)$.

For example, when $k=8, \operatorname{lcm}(24,8)=24$ and so $n=3$. When $k=13$, we have $n=13 \times 24 / 13=24$. When $k=22$, we have $n=11 \times 24 / 22=12$. When $k=2078=$ $24 \times 86+14$ so $\operatorname{lcm}(2078,24)=2078 \times 24 / 2$, therefore $n=2078 \times 12 / 2078=12$.
2. (a) $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ is an element of $S L(2, \mathbb{R})$ since its determinant is $(-1)^{2}=1$. It is clearly of order 2 .
(b) Consider the matrix $B=\left(\begin{array}{cc}\cos (2 \pi / 3) & -\sin (2 \pi / 3) \\ \sin (2 \pi / 3) & \cos (2 \pi / 3)\end{array}\right)=\left(\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right)$. This matrix clearly has determinant 1 since $\sin ^{2} x+\cos ^{2} x=1$ for any x. We claim that this matrix has order 3 . This can be verified directly

$$
B^{3}=\left(\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right)^{3}=\left(\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right)\left(\begin{array}{cc}
-1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & -1 / 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(Alternatively, one can show that the matrix is diagonlizable over \mathbb{C} with eigenvalues $\omega_{1}=e^{2 \pi i / 3}$ and $\omega_{2}=e^{4 \pi i / 3}$. Therefore it is diagonalizable, i.e. there exists some invertible P such that $B=P\left(\begin{array}{cc}\omega_{1} & 0 \\ 0 & \omega_{2}\end{array}\right) P^{-1}$. So we have $B^{3}=P\left(\begin{array}{cc}\omega_{1}^{3} & 0 \\ 0 & \omega_{2}^{3}\end{array}\right) P^{-1}=$ $P P^{-1}=I$. Here we have used $\omega_{1}^{3}=\omega_{2}^{3}=1$.)
(c) $C=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has determinant 1 , so it is an element of $S L(2, \mathbb{R})$. It has infinite order, since for any $n \in \mathbb{Z}_{>0}$, we have

$$
C^{n}=\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right)
$$

This can be shown by an induction argument, as

$$
C^{n+1}=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & n+1 \\
0 & 1
\end{array}\right)
$$

So $C^{n} \neq I$ for any $n>0$. It has infinite order.
3. Suppose that $a, b \in G$ so that $|a b|$ is finite, say $|a b|=n$, notice that $(b a)^{n+1}=\underbrace{(b a)(b a) \ldots(b a)}_{n+1 \text { times }}=$ $b \underbrace{(a b)(a b) \ldots(a b)}_{n \text { times }} a=b e a=b a$. Therefore by multiplying $(b a)^{-1}$ to both sides, we obtain $(b a)^{n}=e$. Now we claim that $(b a)^{k}$ cannot be the identity for $0<k<n$. Otherwise by the same argument (swapping b and a), this would imply that $(a b)^{k}=e$ for $0<k<n$, which contradicts with the definition of $n=|a b|$. So n is equal to the order of $b a$ as well.
4. Let μ_{1}, μ_{2} be disjoint cycles, let $\left|\mu_{1}\right|=n_{1}$ and $\left|\mu_{2}\right|=n_{2}$, then since disjoint cycles commute, we have $\left(\mu_{1} \mu_{2}\right)^{\operatorname{lcm}\left(n_{1}, n_{2}\right)}=\mu_{1}^{\operatorname{lcm}\left(n_{1}, n_{2}\right)} \cdot \mu_{2}^{\operatorname{lcm}\left(n_{1}, n_{2}\right)}$. Now $\operatorname{lcm}\left(n_{1}, n_{2}\right)$ is a multiple of both n_{1}, n_{2}, and so when μ_{1} and μ_{2} are raised to that power, we get e. Therefore, we have $\left(\mu_{1} \mu_{2}\right)^{\operatorname{lcm}\left(n_{1}, n_{2}\right)}=e$.
Conversely, if $\left(\mu_{1} \mu_{2}\right)^{k}=\mu_{1}^{k} \mu_{2}^{k}=e$ for some k, then we must have $\mu_{1}^{k}=\mu_{2}^{k}=e$. This is because μ_{1}^{k} and μ_{2}^{k} are always comprised of disjoint cycles, so they are inverse to each other if and only if they are both trivial. This implies that $n_{1} \mid k$ and $n_{2} \mid k$, so lcm $\left(n_{1}, n_{2}\right) \mid k$. Thus $\operatorname{lcm}\left(n_{1}, n_{2}\right)$ is the minimal power of $\mu_{1} \mu_{2}$ that multiplies to e, i.e. it is the order of $\mu_{1} \mu_{2}$.
For the general case, suppose that we have shown that for any r many disjoint cycles μ_{1}, \ldots, μ_{r}, we have $\left|\mu_{1} \mu_{2} \ldots \mu_{r}\right|=\operatorname{lcm}\left(k_{1}, \ldots, k_{r}\right)$ for $k_{i}=\left|\mu_{i}\right|$. Given $r+1$ many disjoint cycles now, consider the first r cycles, we have $d:=\left|\mu_{1} \ldots \mu_{r}\right|=\operatorname{lcm}\left(k_{1}, \ldots, k_{r}\right)$ by the induction hypothesis. Write $\sigma=\mu_{1} \ldots \mu_{r}$, we have $\left(\sigma \mu_{r+1}\right)^{\operatorname{lcm}\left(d, k_{r+1}\right)}=e$ as before, since d is the order of σ and k_{r+1} is the order of μ_{r+1}.
Conversely, if $\left(\sigma \mu_{r+1}\right)^{l}=e$, then again by the fact that σ and μ_{r+1} are comprised of disjoint cycles, this implies that $\sigma^{l}=\mu_{r+1}^{l}=e$. So that $d \mid l$ and $k_{r+1} \mid l$ and so lcm $\left(d, k_{r+1}\right) \mid l$. Hence, $\operatorname{lcm}\left(d, k_{r+1}\right)$ is the smallest positive power of $\mu_{1} \ldots \mu_{r+1}$ that multiplies to the identity, and we are done since $\operatorname{lcm}\left(d, k_{r+1}\right)=\operatorname{lcm}\left(k_{1}, \ldots, k_{r+1}\right)$.
5. Let r be the rotation of the plane by $2 \pi / 6$, and s be any reflection in D_{6}. Then we have $D_{6}=\left\{e, r, r^{2}, r^{3}, r^{4}, r^{5}, s, s r, s r^{2}, s r^{3}, s r^{4}, s r^{5}\right\}$. Any $s r^{i}$ is a reflection and so has order equals to 2 . Meanwhile a rotation has order 2 precisely when it is rotation by π, i.e. the rotation r^{3}. So there are 7 elements of order 2 .
6. Note that $e^{-1}=e$. If it was the case that g has no order 2 element, then $g \neq g^{-1}$ for all $g \neq e$. And so G can be partitioned into subsets $\{e\},\left\{g_{1}, g_{1}^{-1}\right\},\left\{g_{2}, g_{2}^{-1}\right\}, \ldots$. But this would imply that G has odd order, this is a contradiction. So there must be some order 2 element.

Optional Part

1. We have $a b=e a b=a^{6} b=a^{3}\left(a^{3} b\right)=a^{3} b a^{3}=b a^{6}=b a e=b a$.
2. (a) The group operation given by matrix multiplication on $O(2, \mathbb{R})$ is associative since it inherits from that of $G L(2, \mathbb{R})$. The identity element is the identity matrix I, which is in $O(2, \mathbb{R})$ since $I I^{T}=I I=I$. It remains to show that $O(2, \mathbb{R})$ is closed under group operation and inversion, if $A, B \in O(2, \mathbb{R})$, then $(A B)^{T}(A B)=$ $B^{T}\left(A^{T} A\right) B=B^{T} B=I$ and $(A B)(A B)^{T}=A\left(B B^{T}\right) A^{T}=A A^{T}=I$ so $A B \in$ $O(2, \mathbb{R})$. And $A A^{T}=I$ implies that $I=I^{-1}=\left(A A^{T}\right)^{-1}=\left(A^{T}\right)^{-1} A^{-1}$, but $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$ so this shows that $A^{-1} \in O(2, \mathbb{R})$.
(b) Take the matrix A described in compulsory $\mathrm{Q} 2 \mathrm{a}, A=-I$ is symmetric, so $A A^{T}=$ $A^{2}=I$, so that $A \in O(2, \mathbb{R})$ and has order 2 .
(c) We have seen that matrix B described in compulsory Q2b is a matrix of order 3, from the calculation, notice that B^{2} is in fact B^{T}. So that $B^{3}=B^{2} B=B^{T} B=I$, thus $B \in O(2, \mathbb{R})$.
3. (a) (1325) is a 4 -cycle, so it has order 4.
(b) By compulsory Q4 above, this element has order $\operatorname{lcm}(4,2)=4$.
(c) The order is $\operatorname{lcm}(4,3)=12$.
(d) $(32)(46)(37)(35)=(46)(32)(573)=(46)(3572)$ is a product of disjoint cycles of lengths 2 and 4 , so it has order $\operatorname{lcm}(4,2)=4$.
4. (a) i. $\sigma=(1264)(2513)=(14)(16)(12)(23)(21)(25)$ (in general a k-cycle can be written as product of transition as follows: $\left.\left(i_{1} i_{2} \cdots i_{k}\right)=\left(i_{1} i_{k}\right)\left(i_{1} i_{k-1}\right) \cdots\left(i_{1} i_{2}\right)\right)$. As for τ, it is easier to write it as product of disjoint cycles first, by chasing through elements (e.g. 1 is mapped to 4 , 4 is mapped to 5,5 maps back to 1 , so there is a cycle (145) in τ.) Here $\tau=(145)(376)$. Then we may break it into transposition like previously, $\tau=(15)(14)(36)(37)$.
ii. From the above, note that $(12)(23)(12)=(13)$, so we have $\sigma=(14)(16)(13)(25)=$ (1364)(25). $\tau=(145)(376)$ is computed in part (i).
(b) σ and τ are both (3,3)-cycles, so they both have order equals to $\operatorname{lcm}(3,3)=3$. As for $\sigma \tau=(164)(253)(145)(376)=(256)(374)$ is also a $(3,3)$-cycles, so it also has order 3.
5. (a) By compulsory Q4, an element of S_{5} has order 3 precisely when it is a 3-cycle (also see Q3 of tutorial 2). Then by Q1c of tutorial 2, there are $P_{3}^{5} / 3=20$ many 3-cycles.
(b) An element of order 4 in S_{6} can either be a 4 -cycle of a disjoint product of 4-cycle and 2-cycle (i.e. a (4, 2)-cycle). There are $P_{4}^{6} / 4=90$ many 4 -cycles, and note that 4 -cycle is in bijection with $(4,2)$-cycle, as fixing a 4 -cycle leaves no choice for the remaining two numbers. So there are in total 180 elements of order 4.
(c) Again there are $P_{3}^{7} / 3=70$ many 3 -cycles in S_{7}, which are precisely the elements of order 3. It is also possible to have $(3,3)$-cycles in S_{7}, there are $\frac{1}{2} \times P_{3}^{7} / 3 \times P_{3}^{4} / 3=$ 280 many (3, 3)-cycles, since fixing a 3 -cycle leaves $P_{3}^{4} / 3$ choices to pick another 3cycle out of the remaining 4 numbers, then the $\frac{1}{2}$ is to take out the double-counting from the symmetry of the first and the second 3 -cycles (for example, (123)(456) and (456)(123) are the same permutation, but would be double-counted). Therefore there are 350 many order 3 elements in S_{7}.
6. (a) We will proceed to prove the statement by induction on k. The case when $k=1$ is tautological. Now suppose the statement has been proven for some k. Then

$$
(s r s)^{k}=(s r s)^{k}(s r s)=s r^{k} s s r s=s r^{k} r s=s r^{k+1} s
$$

Therefore the statement holds for all $k \in \mathbb{Z}_{>0}$.
(b) One simple argument is to note that $s r$ is again a reflection, and thus has order 2. So srsr $=e$, multiplying r^{-1} to the right on both sides yields $s r s=r^{-1}$. In particular, this holds for all reflection s and rotation r.
Thus, it suffices to prove that $s r$ is indeed a reflection. This follows from the intuitive fact that composition of two rotations is again a rotation. (If one wants to prove this rigorously, one may try to represent a rotation by a linear transformation, or as multiplication by a unit complex number by identifying $\mathbb{C} \cong \mathbb{R}^{2}$.) If $s r$ was a rotation, then $s r=r^{\prime}$ and so $s=r^{\prime} r^{-1}$, would imply that s is a rotation.

