THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH 2078 Honours Algebraic Structures 2023-24
Homework 2 Solutions
1st February 2024

* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or
in person during office hours.

Compulsory Part

1. Letw = ™12 € C, consider w* = e*™/12, ord (w*) is the smallest positive integer n
such that (w*)" = wW*" = 1. Now e*"™/12 = 1 implies that kn /12 is a multiple of 2, so
that £n is a multiple of 24. The smallest positive integer n is achieved when this multiple
is also smallest. In other words, kn = lem(24, k).

For example, when k£ = 8, lem(24,8) = 24 and so n = 3. When k£ = 13, we have
n =13 x24/13 = 24. When k = 22, we have n = 11 x 24/22 = 12. When k = 2078 =
24 x 86 + 14 so Iem(2078,24) = 2078 x 24/2, therefore n = 2078 x 12/2078 = 12.

2.

(a)

(b)

(©)

A= _01 _01> is an element of SL(2, R) since its determinant is (—1)% = 1. Itis

clearly of order 2.

: . (cos(2n/3) —sin(27/3)\ _ [(—1/2 —/3/2 .
Consider the matrix B = (sin(27r/3) cos(2r/3) ) = \v3/2 —1/2 ) This
matrix clearly has determinant 1 since sin? 2 + cos? z = 1 for any z. We claim that
this matrix has order 3. This can be verified directly

P-(4 -2 R -6 )

(Alternatively, one can show that the matrix is diagonlizable over C with eigenvalues

wi = €>™/3 and wy = €*™/3, Therefore it is diagonalizable, i.e. there exists some in-
3
vertible P suchthat B = P (“* ) P=1. S0 we have B* = P (1 03 Pl =
0 ws 0 w;

PP~! = I. Here we have used w} = w3 = 1.)

0 1
order, since for any n € Z-, we have

n (1 n
o= (1)

This can be shown by an induction argument, as

C’”H—ln 11\ (1 n+1
S \0 1 o1/ \o 1 /J°

So C™ # [ for any n > 0. It has infinite order.

C = (1 ! has determinant 1, so it is an element of SL(2,R). It has infinite



3. Suppose that a, b € G so that |ab| is finite, say |ab| = n, notice that (ba)"** = (ba)(ba)...(ba) =
~—_———

n+1 times
b (ab)(ab)...(ab) a = bea = ba. Therefore by multiplying (ba)~! to both sides, we obtain
~—_—
n times

(ba)™ = e. Now we claim that (ba)* cannot be the identity for 0 < k < n. Otherwise by
the same argument (swapping b and a), this would imply that (ab)* = e for 0 < k < n,
which contradicts with the definition of n = |ab|. So n is equal to the order of ba as well.

4. Let uq, o be disjoint cycles, let |u1| = ny and |us| = no, then since disjoint cycles
commute, we have (i pp)m(rinz) = plemtnene), lemminz) Now jom(ny, ny) is a multiple
of both ny, no, and so when p; and p5 are raised to that power, we get e. Therefore, we

have (p; i)' m(mm2) = e,

Conversely, if (j1p0)* = p¥us = e for some k, then we must have ¥ = p5 = e. This
is because p¥ and 4 are always comprised of disjoint cycles, so they are inverse to each
other if and only if they are both trivial. This implies that n |k and ns |k, so lem(nq, 1) |k.
Thus lem(ny, no) is the minimal power of 1, s that multiplies to e, i.e. it is the order of
H1fbo.

For the general case, suppose that we have shown that for any » many disjoint cycles
[y ooy oy We have |pg pio...pi| = lem(ky, ..., k) for k; = |u;|. Given r + 1 many disjoint
cycles now, consider the first r cycles, we have d := |ug....| = lem(kq, ..., k) by the
induction hypothesis. Write 0 = fi1.../1,., we have (o i,41)"™(@#+1) = ¢ as before, since
d is the order of o and k, is the order of (i, 1.

Conversely, if (o/i,,1)! = e, then again by the fact that o and f,.,; are comprised of dis-
joint cycles, this implies that o' = !, = e. So that d|l and &, |l and so lem(d, k1) |l.
Hence, lem(d, k., 1) is the smallest positive power of ji;...1,1 that multiplies to the iden-
tity, and we are done since lem(d, k, 1) = lem(kq, ..., kp41)-

5. Let r be the rotation of the plane by 27 /6, and s be any reflection in Dg. Then we have
D¢ = {e,r, %, r3, 14,15 s, sr,sr? sr3, srt, sr°}. Any sriis a reflection and so has order
equals to 2. Meanwhile a rotation has order 2 precisely when it is rotation by 7, i.e. the

rotation 73. So there are 7 elements of order 2.

6. Note that e=* = e. If it was the case that g has no order 2 element, then g # ¢~! for all
g # e. And so G can be partitioned into subsets {e}, {g1,97 '}, {92,95 '}, .... But this
would imply that G has odd order, this is a contradiction. So there must be some order 2
element.

Optional Part

1. We have ab = eab = a®b = a*(a®b) = a®ba® = ba® = bae = ba.

2. (a) The group operation given by matrix multiplication on O(2, R) is associative since
it inherits from that of GL(2,R). The identity element is the identity matrix /,
which is in O(2,R) since IIT” = I = I. Tt remains to show that O(2,R) is
closed under group operation and inversion, if A, B € O(2,R), then (AB)T(AB) =
BT(ATA)B = B"B = I and (AB)(AB)T = A(BBT)AT = AAT = I so AB €
O(2,R). And AAT = [ implies that I = 7! = (AAT)™' = (AT)"'A~!, but
(A~HT = (AT)~! so this shows that A~! € O(2, R).



(b) Take the matrix A described in compulsory Q2a, A = —1I is symmetric, so AAT =
A? = I,sothat A € O(2,R) and has order 2.

(c) We have seen that matrix B described in compulsory Q2b is a matrix of order 3,
from the calculation, notice that B2 is in fact B”. So that B3> = BB = B'B =1,
thus B € O(2,R).

(a) (1325) is a 4-cycle, so it has order 4.
(b) By compulsory Q4 above, this element has order lem(4, 2) = 4.
(c) The order is lem(4, 3) = 12.

(d) (32)(46)(37)(35) = (46)(32)(573) = (46)(3572) is a product of disjoint cycles of
lengths 2 and 4, so it has order lem(4, 2) = 4.

(@ 1. 0 = (1264)(2513) = (14)(16)(12)(23)(21)(25) (in general a k-cycle can be
written as product of transition as follows: (iyis - - - ix) = (i14g)(¢19k—1) - - - (1192)).
As for 7, it is easier to write it as product of disjoint cycles first, by chasing
through elements (e.g. 1 is mapped to 4, 4 is mapped to 5, 5 maps back to 1, so
there is a cycle (145) in 7.) Here 7 = (145)(376). Then we may break it into
transposition like previously, 7 = (15)(14)(36)(37).

ii. From the above, note that (12)(23)(12) = (13), so we have 0 = (14)(16)(13)(25) =

(1364)(25).
T = (145)(376) is computed in part (i).

(b) o and 7 are both (3, 3)-cycles, so they both have order equals to lcm(3,3) = 3. As
for o7 = (164)(253)(145)(376) = (256)(374) is also a (3, 3)-cycles, so it also has
order 3.

(a) By compulsory Q4, an element of S5 has order 3 precisely when it is a 3-cycle (also
see Q3 of tutorial 2). Then by Qlc of tutorial 2, there are PJ/3 = 20 many 3-cycles.

(b) An element of order 4 in Sg can either be a 4-cycle of a disjoint product of 4-cycle
and 2-cycle (i.e. a (4, 2)-cycle). There are PY/4 = 90 many 4-cycles, and note that
4-cycle is in bijection with (4, 2)-cycle, as fixing a 4-cycle leaves no choice for the
remaining two numbers. So there are in total 180 elements of order 4.

(c) Again there are P /3 = 70 many 3-cycles in S7, which are precisely the elements of
order 3. It is also possible to have (3, 3)-cycles in Sy, there are 1 x PJ/3 x P{/3 =
280 many (3, 3)-cycles, since fixing a 3-cycle leaves Py /3 choices to pick another 3-
cycle out of the remaining 4 numbers, then the % is to take out the double-counting
from the symmetry of the first and the second 3-cycles (for example, (123)(456)
and (456)(123) are the same permutation, but would be double-counted). Therefore
there are 350 many order 3 elements in S7.

(a) We will proceed to prove the statement by induction on k. The case when k£ = 1 is
tautological. Now suppose the statement has been proven for some k. Then

(srs)" = (srs)F(srs) = sr¥ssrs = srfrs = srftls.

Therefore the statement holds for all £ € Z~,.



(b) One simple argument is to note that sr is again a reflection, and thus has order 2. So
srsr = e, multiplying ! to the right on both sides yields srs = r~ . In particular,
this holds for all reflection s and rotation 7.

Thus, it suffices to prove that sr is indeed a reflection. This follows from the intuitive
fact that composition of two rotations is again a rotation. (If one wants to prove
this rigorously, one may try to represent a rotation by a linear transformation, or
as multiplication by a unit complex number by identifying C = R2.) If sr was a
rotation, then s = 7’ and so s = r'r~!, would imply that s is a rotation.



