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Compulsory Part

1. Let

T =

{(
x 0
0 y

)
: x, y ∈ C, xy = 1

}
.

Let A,B ∈ T , write A =

(
x 0
0 y

)
and B =

(
u 0
0 v

)
, with xy = uv = 1. Then AB =(

xu 0
0 yv

)
. Since xuyv = (xy)(uv) = 1, we have AB ∈ T . So matrix multiplication

is a binary operation on T . This operation is associative since matrix multiplication is

associative. The identity matrix I =

(
1 0
0 1

)
is in T , and is the identity element, since

IA = AI = A for any A ∈ T . Finally, given A =

(
x 0
0 y

)
, its inverse is given by

A−1 =

(
x−1 0
0 y−1

)
. This is well-defined since if xy = 1, x, y are both nonzero. It is

clear that AA−1 = A−1A = I . So T is a group.

2. Let φ, ψ ∈ Aff(n,R), one may write φ(x) = Ax + b and ψ(x) = Cx + d for some
A,C ∈ GL(n,R) and b, d ∈ Rn. Then φ ◦ ψ(x) = A(Cx + d) + b = ACx + (Ad + b),
here AC ∈ GL(n,R) is just the matrix product, and Ad+ b ∈ Rn, so φ ◦ ψ ∈ Aff(n,R)
again.

Then identity element in Aff(n,R) is given by the identity map I(x) := x. This is an
element in Aff(n,R) by taking A = I the identity matrix and b = 0 ∈ Rn. It is clear that
I ◦ φ(x) = φ(x) = φ ◦ I(x) for any φ.

Now given any φ ∈ Aff(n,R), write φ(x) = Ax + b. Then its inverse is given by
φ−1(x) = A−1x− A−1b, where A−1 is the inverse matrix of A. Note that

φ(φ−1(x)) = A(A−1x− A−1b) + b = x− b+ b = x = I(x)

and
φ−1(φ(x)) = A−1(Ax+ b)− A−1b = x+ A−1b− A−1b = x = I(x).

So φ−1 is indeed the inverse. So Aff(n,R) forms a group.

3. (a) To show that (g−1)−1 = g, it suffices to show that g is an inverse to g−1, then by
uniqueness of inverse, we obtain the result. Since gg−1 = g−1g = e by the fact that
g−1 is the inverse of g, this shows that g is an inverse of g−1 and we are done.



(b) Note that for any a, b ∈ G, (b−1a−1)(ab) = b−1(a−1a)b = b−1eb = b−1b = e and
ab(b−1a−1) = a(bb−1)a−1 = aea−1 = aa−1 = e. So b−1a−1 is an inverse of ab, by
uniqueness of inverse, we have (ab)−1 = b−1a−1.

(c) Take any n ∈ Z, then we will first prove by induction that for any m ≥ 0, we have
gn ·gm = gn+m. For the base case, take m = 0, and we have gn ·g0 = gn · e = gn+0.
Suppose the proposition is true for some m ≥ 0 and n ∈ Z arbitrary, consider

gn · gm+1 = gn · (g · g · · · g︸ ︷︷ ︸
m+1 times

) = gn · (gm · g) = (gn · gm) · g = gn+m · g = gn+m+1.

Here in the last equality, we have used the inductive step for n′ = n +m. Thus by
induction, gn · gm holds for arbitrary m ≥ 0 and n ∈ Z.
Now since the above proof works for any g ∈ G, in particular, it holds for g−1, thus
this shows that for n ∈ Z and m ≥ 0, we have

g−n · g−m = (g−1)n · (g−1)m = (g−1)n+m = g−n−m.

Thus, we have gn · gm = gn+m holds for n ∈ Z and m ≤ 0 as well. This completes
the proof.

4. The operation is associative because ∗1 and ∗2 are. In other words, for a1, a2, a3 ∈ G1

and b1, b2, b3 ∈ G2, we have

((a1, b1) ∗ (a2, b2)) ∗ (a3, b3) = (a1 ∗1 a2, b1 ∗2 b2) ∗ (a3, b3)
= ((a1 ∗1 a2) ∗1 a3, (b1 ∗2 b2) ∗2 b3)
= (a1 ∗1 (a2 ∗1 a3), b1 ∗2 (b2 ∗2 b3))
= (a1, b1) ∗ (a2 ∗1 a3, b2 ∗2 b3)
= (a1, b1) ∗ ((a2, b2) ∗ (a3, b3)).

Let e1 and e2 be the indentity element in G1 and G2 respectively, then (e1, e2) ∈ G1 ×G2

is the identity element for the product, since for any (a, b) ∈ G1 ×G2, we have

(a, b) ∗ (e1, e2) = (a ∗1 e1, b ∗2 e2) = (a, b) = (e1 ∗1 a, e2 ∗2 b) = (e1, e2) ∗ (a, b).

Let a ∈ G1, b ∈ G2, then we claim that the inverse to (a, b) ∈ G1 × G2 is given by
(a−1, b−1). Indeed,

(a, b)∗(a−1, b−1) = (a∗1a−1.b∗2b−1) = (e1, e2) = (a−1∗1a, b−1∗2b) = (a−1, b−1)∗(a, b).

So G1 ×G2 indeed forms a group.

If now {Gi}i∈I is an arbitrary family of group, one can define the group operation on
Πi∈IGi by the following. An element of Πi∈IGi is a collection (gi)i∈I such that gi ∈ Gi

for each i ∈ I (more precisely it is a function f : I →
⋃

i∈I Gi such that f(i) ∈ Gi).
Thus we can define (gi)i∈I ∗ (hi)i∈I := (gi ∗i hi)i∈I , where ∗i is the group operation in Gi.

5. Suppose that g ∈ G is some element satisfying g2 = g, then by multiplying both sides of
the equation by g−1 ∈ G, we have g−1g2 = g−1g = e. The LHS of that equation is equal
to g by part (c) of Q3, so g = e. Now indeed e2 = e, so it is the unique solution satisfying
x2 = x.



Optional Part

1. (a) No, there is no inverse to 1 ∈ N. For any n ∈ N, n+ 1 > 0 so it cannot be equal to
the identity element 0.

(b) Yes. It is a binary operation since if x > 0 and y > 0, we have xy > 0. The
operation is clearly associative. The identity element is obviously given by 1. And
since every x ∈ R>0 is nonzero, therefore 1/x > 0 is well-defined, with the property
that x · (1/x) = 1 = (1/x) · x. Therefore it is a group.

(c) Yes. For 2n, 2m ∈ 2Z, we have 2n + 2m = 2(n +m) ∈ 2Z again. And addition
is clearly associative, with identity element given by 0. For any 2n ∈ 2Z, −2n is
again an element in 2Z so that 2n+ (−2n) = −2n+ 2n = 0. So it is a group.

(d) Yes. Let z, w ∈ U , then zw satisfies |zw| = |z| · |w| = 1 so zw ∈ U . It is again
associative. The identity element is given by 1. And given z ∈ U , its inverse 1/z is
also in U since |1/z| = 1/|z| = 1.

(e) No. Multiplication does not define a binary operation on S := {z : Im(z) = 1}, for
example i ∈ S but i · i = −1 has imaginary part 0, so i2 ̸∈ S.

(f) If m ̸= n, then one simply cannot multiply two m × n matrices. So you don’t
even have an operation. If m = n, the binary operation is well-defined. Note that
however the zero matrix 0 satisfies 0A = A0 = 0 for any other matrix A. In
particular there cannot be any identity element, since e0 = e = 0 implies that e = 0
but 0A = A0 = 0 would imply that A = 0. Clearly not every matrix is zero, so
there is no identity element.

(g) No, for example
(
2 0
0 1

)
has determinant 2 ∈ Z. Its inverse matrix is given by(

1
2

0
0 1

)
, which does not have integer coefficients. So it does not admit inverse in

the same set.

(h) Yes. Note that the operation is associative, since

((x1, y1) ∗ (x2, y2)) ∗ (x3, y3) = (x1 + x2, y1 + y2 + x1x2) ∗ (x3, y3)
= (x1 + x2 + x3, y1 + y2 + y3 + x1x2 + x1x3 + x2x3),

is equalt to

(x1, y1) ∗ ((x2, y2) ∗ (x3, y3)) = (x1, y1) ∗ (x2 + x3, y2 + y3 + x2x3)

= (x1 + x2 + x3, y1 + y2 + y3 + x2x3 + x1x2 + x1x3).

Also note that the operation is abelian, so that (x1, y1)∗(x2, y2) = (x2, y2)∗(x1, y1).
We have (0, 0) is the identity element, since

(x, y) ∗ (0, 0) = (0, 0) ∗ (x, y) = (0 + x, 0 + y + 0) = (x, y).

Given any (x, y), its inverse is given by (−x, x2 − y). Since

(−x, x2−y)∗(x, y) = (x, y)∗(−x, x2−y) = (x−x, y+x2−y+x(−x)) = (0, 0).



2. Note that R is closed under addition, meaning that addition does indeed define a binary
operation. For r1, r2 ∈ R, there are positive integers m,n so that 2mr1 and 2nr2 are
integers. Therefore 2max{m,n}(r1 + r2) is an integer as well.

Clearly 0 is the identity and it lies in R. And for any r ∈ R, we have its inverse −r is
also in R, since 2nr is an integer if and only if 2n(−r) is an integer.

3. (a) By the relations, we have

1 = (−1)(−1) = (−1)(ijk) = ij(−1)k = ij(−k).

Therefore ij is an inverse of −k. On the other hand, we also have

1 = (−1)(−1) = (−1)k2 = k(−k).

So k is also an inverse of −k. By uniqueness of inverse, we have ij = k.
Now notice that (ijk)i = (−1)i = i(−1), therefore multiplying −i on the left on
both sides yields jki = −1. By replacing i by j, j by k and k by i in the above
argument, we obtain jk = i.

(b) Note that by i2 = j2 = k2 = −1, we have i−1 = −i, j−1 = −j, and k−1 = −k.
So −k = k−1 = (ij)−1 = j−1i−1 = (−j)(−i) = ji. Then by part (a), we have
ij = k = −(−k) = −ji.

4. We may prove the proposition by induction on n. Clearly the equality holds for n = 1 as
both sides are the same. Now suppose the equality holds for some n, then for the n + 1
case,

(ab)n+1 = (ab)(ab)n = (ab)(anbn) = a2ban−1bn = ... = anbabn = an+1bn+1.

5. Let A be an object in a category C, then the composition on AutC(A) is associative by
definition of a category. The identity element is given by the identity morphism 1A, since
by definition for any f ∈ AutC(A) we have 1A◦f = f ◦1A = f . Note that 1A ∈ AutC(A)
because 1A is an isomorphism from A to itself, namely 1A ◦ 1A = 1A.

Now let f ∈ AutC(A), since it is an automorphism, there is some f−1 ∈ Hom(A,A) so
that f ◦ f−1 = f−1 ◦ f = 1A. It follows that f−1 in fact is an element of AutC(A) since
f−1 is an isomorphism.


