THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 Honours Algebraic Structures 2023-24 Homework 1 Solutions 18th January 2024

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. Let

$$T = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{C}, xy = 1 \right\}.$$

Let $A, B \in T$, write $A = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ and $B = \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix}$, with xy = uv = 1. Then $AB = \begin{pmatrix} xu & 0 \\ 0 & yv \end{pmatrix}$. Since xuyv = (xy)(uv) = 1, we have $AB \in T$. So matrix multiplication is a binary operation on T. This operation is associative since matrix multiplication is associative. The identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is in T, and is the identity element, since IA = AI = A for any $A \in T$. Finally, given $A = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$, its inverse is given by $A^{-1} = \begin{pmatrix} x^{-1} & 0 \\ 0 & y^{-1} \end{pmatrix}$. This is well-defined since if xy = 1, x, y are both nonzero. It is clear that $AA^{-1} = A^{-1}A = I$. So T is a group.

2. Let $\varphi, \psi \in \operatorname{Aff}(n, \mathbb{R})$, one may write $\varphi(x) = Ax + b$ and $\psi(x) = Cx + d$ for some $A, C \in GL(n, \mathbb{R})$ and $b, d \in \mathbb{R}^n$. Then $\varphi \circ \psi(x) = A(Cx + d) + b = ACx + (Ad + b)$, here $AC \in GL(n, \mathbb{R})$ is just the matrix product, and $Ad + b \in \mathbb{R}^n$, so $\varphi \circ \psi \in \operatorname{Aff}(n, \mathbb{R})$ again.

Then identity element in $Aff(n, \mathbb{R})$ is given by the identity map I(x) := x. This is an element in $Aff(n, \mathbb{R})$ by taking A = I the identity matrix and $b = 0 \in \mathbb{R}^n$. It is clear that $I \circ \varphi(x) = \varphi(x) = \varphi \circ I(x)$ for any φ .

Now given any $\varphi \in Aff(n, \mathbb{R})$, write $\varphi(x) = Ax + b$. Then its inverse is given by $\varphi^{-1}(x) = A^{-1}x - A^{-1}b$, where A^{-1} is the inverse matrix of A. Note that

$$\varphi(\varphi^{-1}(x)) = A(A^{-1}x - A^{-1}b) + b = x - b + b = x = I(x)$$

and

$$\varphi^{-1}(\varphi(x)) = A^{-1}(Ax+b) - A^{-1}b = x + A^{-1}b - A^{-1}b = x = I(x).$$

So φ^{-1} is indeed the inverse. So $\operatorname{Aff}(n,\mathbb{R})$ forms a group.

3. (a) To show that $(g^{-1})^{-1} = g$, it suffices to show that g is an inverse to g^{-1} , then by uniqueness of inverse, we obtain the result. Since $gg^{-1} = g^{-1}g = e$ by the fact that g^{-1} is the inverse of g, this shows that g is an inverse of g^{-1} and we are done.

- (b) Note that for any $a, b \in G$, $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$ and $ab(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$. So $b^{-1}a^{-1}$ is an inverse of ab, by uniqueness of inverse, we have $(ab)^{-1} = b^{-1}a^{-1}$.
- (c) Take any $n \in \mathbb{Z}$, then we will first prove by induction that for any $m \ge 0$, we have $g^n \cdot g^m = g^{n+m}$. For the base case, take m = 0, and we have $g^n \cdot g^0 = g^n \cdot e = g^{n+0}$. Suppose the proposition is true for some $m \ge 0$ and $n \in \mathbb{Z}$ arbitrary, consider

$$g^n \cdot g^{m+1} = g^n \cdot (\underbrace{g \cdot g \cdot \cdot \cdot g}_{m+1 \text{ times}}) = g^n \cdot (g^m \cdot g) = (g^n \cdot g^m) \cdot g = g^{n+m} \cdot g = g^{n+m+1}.$$

Here in the last equality, we have used the inductive step for n' = n + m. Thus by induction, $g^n \cdot g^m$ holds for arbitrary $m \ge 0$ and $n \in \mathbb{Z}$.

Now since the above proof works for any $g \in G$, in particular, it holds for g^{-1} , thus this shows that for $n \in \mathbb{Z}$ and $m \ge 0$, we have

$$g^{-n} \cdot g^{-m} = (g^{-1})^n \cdot (g^{-1})^m = (g^{-1})^{n+m} = g^{-n-m}$$

Thus, we have $g^n \cdot g^m = g^{n+m}$ holds for $n \in \mathbb{Z}$ and $m \leq 0$ as well. This completes the proof.

4. The operation is associative because $*_1$ and $*_2$ are. In other words, for $a_1, a_2, a_3 \in G_1$ and $b_1, b_2, b_3 \in G_2$, we have

$$((a_1, b_1) * (a_2, b_2)) * (a_3, b_3) = (a_1 * a_2, b_1 * b_2) * (a_3, b_3)$$

= $((a_1 * a_2) * a_3, (b_1 * b_2) * b_3)$
= $(a_1 * a_2 * a_3, b_1 * b_2) * b_3)$
= $(a_1 * a_2 * a_3, b_1 * b_2) * b_3)$
= $(a_1, b_1) * (a_2 * a_3, b_2 * b_3)$
= $(a_1, b_1) * ((a_2, b_2) * (a_3, b_3)).$

Let e_1 and e_2 be the indentity element in G_1 and G_2 respectively, then $(e_1, e_2) \in G_1 \times G_2$ is the identity element for the product, since for any $(a, b) \in G_1 \times G_2$, we have

$$(a,b) * (e_1, e_2) = (a *_1 e_1, b *_2 e_2) = (a,b) = (e_1 *_1 a, e_2 *_2 b) = (e_1, e_2) * (a,b).$$

Let $a \in G_1, b \in G_2$, then we claim that the inverse to $(a, b) \in G_1 \times G_2$ is given by (a^{-1}, b^{-1}) . Indeed,

$$(a,b)*(a^{-1},b^{-1}) = (a*_1a^{-1}.b*_2b^{-1}) = (e_1,e_2) = (a^{-1}*_1a,b^{-1}*_2b) = (a^{-1},b^{-1})*(a,b).$$

So $G_1 \times G_2$ indeed forms a group.

If now $\{G_i\}_{i\in I}$ is an arbitrary family of group, one can define the group operation on $\prod_{i\in I}G_i$ by the following. An element of $\prod_{i\in I}G_i$ is a collection $(g_i)_{i\in I}$ such that $g_i \in G_i$ for each $i \in I$ (more precisely it is a function $f : I \to \bigcup_{i\in I}G_i$ such that $f(i) \in G_i$). Thus we can define $(g_i)_{i\in I} * (h_i)_{i\in I} := (g_i *_i h_i)_{i\in I}$, where $*_i$ is the group operation in G_i .

5. Suppose that $g \in G$ is some element satisfying $g^2 = g$, then by multiplying both sides of the equation by $g^{-1} \in G$, we have $g^{-1}g^2 = g^{-1}g = e$. The LHS of that equation is equal to g by part (c) of Q3, so g = e. Now indeed $e^2 = e$, so it is the unique solution satisfying $x^2 = x$.

Optional Part

- 1. (a) No, there is no inverse to $1 \in \mathbb{N}$. For any $n \in \mathbb{N}$, n+1 > 0 so it cannot be equal to the identity element 0.
 - (b) Yes. It is a binary operation since if x > 0 and y > 0, we have xy > 0. The operation is clearly associative. The identity element is obviously given by 1. And since every $x \in \mathbb{R}_{>0}$ is nonzero, therefore 1/x > 0 is well-defined, with the property that $x \cdot (1/x) = 1 = (1/x) \cdot x$. Therefore it is a group.
 - (c) Yes. For $2n, 2m \in 2\mathbb{Z}$, we have $2n + 2m = 2(n + m) \in 2\mathbb{Z}$ again. And addition is clearly associative, with identity element given by 0. For any $2n \in 2\mathbb{Z}$, -2n is again an element in $2\mathbb{Z}$ so that 2n + (-2n) = -2n + 2n = 0. So it is a group.
 - (d) Yes. Let $z, w \in U$, then zw satisfies $|zw| = |z| \cdot |w| = 1$ so $zw \in U$. It is again associative. The identity element is given by 1. And given $z \in U$, its inverse 1/z is also in U since |1/z| = 1/|z| = 1.
 - (e) No. Multiplication does not define a binary operation on S := {z : Im(z) = 1}, for example i ∈ S but i · i = −1 has imaginary part 0, so i² ∉ S.
 - (f) If $m \neq n$, then one simply cannot multiply two $m \times n$ matrices. So you don't even have an operation. If m = n, the binary operation is well-defined. Note that however the zero matrix 0 satisfies 0A = A0 = 0 for any other matrix A. In particular there cannot be any identity element, since e0 = e = 0 implies that e = 0 but 0A = A0 = 0 would imply that A = 0. Clearly not every matrix is zero, so there is no identity element.
 - (g) No, for example $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ has determinant $2 \in \mathbb{Z}$. Its inverse matrix is given by $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$, which does not have integer coefficients. So it does not admit inverse in the same set.
 - (h) Yes. Note that the operation is associative, since

$$((x_1, y_1) * (x_2, y_2)) * (x_3, y_3) = (x_1 + x_2, y_1 + y_2 + x_1 x_2) * (x_3, y_3)$$

= $(x_1 + x_2 + x_3, y_1 + y_2 + y_3 + x_1 x_2 + x_1 x_3 + x_2 x_3)$

is equalt to

$$(x_1, y_1) * ((x_2, y_2) * (x_3, y_3)) = (x_1, y_1) * (x_2 + x_3, y_2 + y_3 + x_2x_3)$$

= $(x_1 + x_2 + x_3, y_1 + y_2 + y_3 + x_2x_3 + x_1x_2 + x_1x_3)$.

Also note that the operation is abelian, so that $(x_1, y_1) * (x_2, y_2) = (x_2, y_2) * (x_1, y_1)$. We have (0, 0) is the identity element, since

$$(x, y) * (0, 0) = (0, 0) * (x, y) = (0 + x, 0 + y + 0) = (x, y).$$

Given any (x, y), its inverse is given by $(-x, x^2 - y)$. Since

$$(-x, x^2 - y) * (x, y) = (x, y) * (-x, x^2 - y) = (x - x, y + x^2 - y + x(-x)) = (0, 0).$$

2. Note that R is closed under addition, meaning that addition does indeed define a binary operation. For $r_1, r_2 \in R$, there are positive integers m, n so that $2^m r_1$ and $2^n r_2$ are integers. Therefore $2^{\max\{m,n\}}(r_1 + r_2)$ is an integer as well.

Clearly 0 is the identity and it lies in R. And for any $r \in R$, we have its inverse -r is also in R, since $2^n r$ is an integer if and only if $2^n(-r)$ is an integer.

3. (a) By the relations, we have

$$1 = (-1)(-1) = (-1)(ijk) = ij(-1)k = ij(-k).$$

Therefore ij is an inverse of -k. On the other hand, we also have

$$1 = (-1)(-1) = (-1)k^2 = k(-k).$$

So k is also an inverse of -k. By uniqueness of inverse, we have ij = k.

Now notice that (ijk)i = (-1)i = i(-1), therefore multiplying -i on the left on both sides yields jki = -1. By replacing i by j, j by k and k by i in the above argument, we obtain jk = i.

- (b) Note that by $i^2 = j^2 = k^2 = -1$, we have $i^{-1} = -i$, $j^{-1} = -j$, and $k^{-1} = -k$. So $-k = k^{-1} = (ij)^{-1} = j^{-1}i^{-1} = (-j)(-i) = ji$. Then by part (a), we have ij = k = -(-k) = -ji.
- 4. We may prove the proposition by induction on n. Clearly the equality holds for n = 1 as both sides are the same. Now suppose the equality holds for some n, then for the n + 1 case,

$$(ab)^{n+1} = (ab)(ab)^n = (ab)(a^n b^n) = a^2 b a^{n-1} b^n = \dots = a^n b a b^n = a^{n+1} b^{n+1}.$$

5. Let A be an object in a category C, then the composition on Aut_C(A) is associative by definition of a category. The identity element is given by the identity morphism 1_A, since by definition for any f ∈ Aut_C(A) we have 1_A ∘ f = f ∘ 1_A = f. Note that 1_A ∈ Aut_C(A) because 1_A is an isomorphism from A to itself, namely 1_A ∘ 1_A = 1_A.

Now let $f \in Aut_{\mathcal{C}}(A)$, since it is an automorphism, there is some $f^{-1} \in Hom(A, A)$ so that $f \circ f^{-1} = f^{-1} \circ f = \mathbf{1}_A$. It follows that f^{-1} in fact is an element of $Aut_{\mathcal{C}}(A)$ since f^{-1} is an isomorphism.