THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Homework 1 Solutions
 18th January 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. Let

$$
T=\left\{\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right): x, y \in \mathbb{C}, x y=1\right\} .
$$

Let $A, B \in T$, write $A=\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)$ and $B=\left(\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right)$, with $x y=u v=1$. Then $A B=$ $\left(\begin{array}{cc}x u & 0 \\ 0 & y v\end{array}\right)$. Since $x u y v=(x y)(u v)=1$, we have $A B \in T$. So matrix multiplication is a binary operation on T. This operation is associative since matrix multiplication is associative. The identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is in T, and is the identity element, since $I A=A I=A$ for any $A \in T$. Finally, given $A=\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)$, its inverse is given by $A^{-1}=\left(\begin{array}{cc}x^{-1} & 0 \\ 0 & y^{-1}\end{array}\right)$. This is well-defined since if $x y=1, x, y$ are both nonzero. It is clear that $A A^{-1}=A^{-1} A=I$. So T is a group.
2. Let $\varphi, \psi \in \operatorname{Aff}(n, \mathbb{R})$, one may write $\varphi(x)=A x+b$ and $\psi(x)=C x+d$ for some $A, C \in G L(n, \mathbb{R})$ and $b, d \in \mathbb{R}^{n}$. Then $\varphi \circ \psi(x)=A(C x+d)+b=A C x+(A d+b)$, here $A C \in G L(n, \mathbb{R})$ is just the matrix product, and $A d+b \in \mathbb{R}^{n}$, so $\varphi \circ \psi \in \operatorname{Aff}(n, \mathbb{R})$ again.

Then identity element in $\operatorname{Aff}(n, \mathbb{R})$ is given by the identity map $I(x):=x$. This is an element in $\operatorname{Aff}(n, \mathbb{R})$ by taking $A=I$ the identity matrix and $b=0 \in \mathbb{R}^{n}$. It is clear that $I \circ \varphi(x)=\varphi(x)=\varphi \circ I(x)$ for any φ.
Now given any $\varphi \in \operatorname{Aff}(n, \mathbb{R})$, write $\varphi(x)=A x+b$. Then its inverse is given by $\varphi^{-1}(x)=A^{-1} x-A^{-1} b$, where A^{-1} is the inverse matrix of A. Note that

$$
\varphi\left(\varphi^{-1}(x)\right)=A\left(A^{-1} x-A^{-1} b\right)+b=x-b+b=x=I(x)
$$

and

$$
\varphi^{-1}(\varphi(x))=A^{-1}(A x+b)-A^{-1} b=x+A^{-1} b-A^{-1} b=x=I(x)
$$

$\operatorname{So} \varphi^{-1}$ is indeed the inverse. $\operatorname{So} \operatorname{Aff}(n, \mathbb{R})$ forms a group.
3. (a) To show that $\left(g^{-1}\right)^{-1}=g$, it suffices to show that g is an inverse to g^{-1}, then by uniqueness of inverse, we obtain the result. Since $g g^{-1}=g^{-1} g=e$ by the fact that g^{-1} is the inverse of g, this shows that g is an inverse of g^{-1} and we are done.
(b) Note that for any $a, b \in G$, $\left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1} e b=b^{-1} b=e$ and $a b\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a e a^{-1}=a a^{-1}=e$. So $b^{-1} a^{-1}$ is an inverse of $a b$, by uniqueness of inverse, we have $(a b)^{-1}=b^{-1} a^{-1}$.
(c) Take any $n \in \mathbb{Z}$, then we will first prove by induction that for any $m \geq 0$, we have $g^{n} \cdot g^{m}=g^{n+m}$. For the base case, take $m=0$, and we have $g^{n} \cdot g^{0}=g^{n} \cdot e=g^{n+0}$. Suppose the proposition is true for some $m \geq 0$ and $n \in \mathbb{Z}$ arbitrary, consider

$$
g^{n} \cdot g^{m+1}=g^{n} \cdot(\underbrace{g \cdot g \cdots g}_{m+1 \text { times }})=g^{n} \cdot\left(g^{m} \cdot g\right)=\left(g^{n} \cdot g^{m}\right) \cdot g=g^{n+m} \cdot g=g^{n+m+1} .
$$

Here in the last equality, we have used the inductive step for $n^{\prime}=n+m$. Thus by induction, $g^{n} \cdot g^{m}$ holds for arbitrary $m \geq 0$ and $n \in \mathbb{Z}$.
Now since the above proof works for any $g \in G$, in particular, it holds for g^{-1}, thus this shows that for $n \in \mathbb{Z}$ and $m \geq 0$, we have

$$
g^{-n} \cdot g^{-m}=\left(g^{-1}\right)^{n} \cdot\left(g^{-1}\right)^{m}=\left(g^{-1}\right)^{n+m}=g^{-n-m}
$$

Thus, we have $g^{n} \cdot g^{m}=g^{n+m}$ holds for $n \in \mathbb{Z}$ and $m \leq 0$ as well. This completes the proof.
4. The operation is associative because $*_{1}$ and $*_{2}$ are. In other words, for $a_{1}, a_{2}, a_{3} \in G_{1}$ and $b_{1}, b_{2}, b_{3} \in G_{2}$, we have

$$
\begin{aligned}
\left(\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right)\right) *\left(a_{3}, b_{3}\right) & =\left(a_{1} *_{1} a_{2}, b_{1} *_{2} b_{2}\right) *\left(a_{3}, b_{3}\right) \\
& =\left(\left(a_{1} *_{1} a_{2}\right) *_{1} a_{3},\left(b_{1} *_{2} b_{2}\right) *_{2} b_{3}\right) \\
& =\left(a_{1} *_{1}\left(a_{2} *_{1} a_{3}\right), b_{1} *_{2}\left(b_{2} *_{2} b_{3}\right)\right) \\
& =\left(a_{1}, b_{1}\right) *\left(a_{2} *_{1} a_{3}, b_{2} *_{2} b_{3}\right) \\
& =\left(a_{1}, b_{1}\right) *\left(\left(a_{2}, b_{2}\right) *\left(a_{3}, b_{3}\right)\right) .
\end{aligned}
$$

Let e_{1} and e_{2} be the indentity element in G_{1} and G_{2} respectively, then $\left(e_{1}, e_{2}\right) \in G_{1} \times G_{2}$ is the identity element for the product, since for any $(a, b) \in G_{1} \times G_{2}$, we have

$$
(a, b) *\left(e_{1}, e_{2}\right)=\left(a *_{1} e_{1}, b *_{2} e_{2}\right)=(a, b)=\left(e_{1} *_{1} a, e_{2} *_{2} b\right)=\left(e_{1}, e_{2}\right) *(a, b) .
$$

Let $a \in G_{1}, b \in G_{2}$, then we claim that the inverse to $(a, b) \in G_{1} \times G_{2}$ is given by (a^{-1}, b^{-1}). Indeed,
$(a, b) *\left(a^{-1}, b^{-1}\right)=\left(a *_{1} a^{-1} \cdot b *_{2} b^{-1}\right)=\left(e_{1}, e_{2}\right)=\left(a^{-1} *_{1} a, b^{-1} *_{2} b\right)=\left(a^{-1}, b^{-1}\right) *(a, b)$.
So $G_{1} \times G_{2}$ indeed forms a group.
If now $\left\{G_{i}\right\}_{i \in I}$ is an arbitrary family of group, one can define the group operation on $\Pi_{i \in I} G_{i}$ by the following. An element of $\Pi_{i \in I} G_{i}$ is a collection $\left(g_{i}\right)_{i \in I}$ such that $g_{i} \in G_{i}$ for each $i \in I$ (more precisely it is a function $f: I \rightarrow \bigcup_{i \in I} G_{i}$ such that $f(i) \in G_{i}$). Thus we can define $\left(g_{i}\right)_{i \in I} *\left(h_{i}\right)_{i \in I}:=\left(g_{i} *_{i} h_{i}\right)_{i \in I}$, where $*_{i}$ is the group operation in G_{i}.
5. Suppose that $g \in G$ is some element satisfying $g^{2}=g$, then by multiplying both sides of the equation by $g^{-1} \in G$, we have $g^{-1} g^{2}=g^{-1} g=e$. The LHS of that equation is equal to g by part (c) of Q3, so $g=e$. Now indeed $e^{2}=e$, so it is the unique solution satisfying $x^{2}=x$.

Optional Part

1. (a) No, there is no inverse to $1 \in \mathbb{N}$. For any $n \in \mathbb{N}, n+1>0$ so it cannot be equal to the identity element 0 .
(b) Yes. It is a binary operation since if $x>0$ and $y>0$, we have $x y>0$. The operation is clearly associative. The identity element is obviously given by 1 . And since every $x \in \mathbb{R}_{>0}$ is nonzero, therefore $1 / x>0$ is well-defined, with the property that $x \cdot(1 / x)=1=(1 / x) \cdot x$. Therefore it is a group.
(c) Yes. For $2 n, 2 m \in 2 \mathbb{Z}$, we have $2 n+2 m=2(n+m) \in 2 \mathbb{Z}$ again. And addition is clearly associative, with identity element given by 0 . For any $2 n \in 2 \mathbb{Z},-2 n$ is again an element in $2 \mathbb{Z}$ so that $2 n+(-2 n)=-2 n+2 n=0$. So it is a group.
(d) Yes. Let $z, w \in U$, then $z w$ satisfies $|z w|=|z| \cdot|w|=1$ so $z w \in U$. It is again associative. The identity element is given by 1 . And given $z \in U$, its inverse $1 / z$ is also in U since $|1 / z|=1 /|z|=1$.
(e) No. Multiplication does not define a binary operation on $S:=\{z: \operatorname{Im}(z)=1\}$, for example $i \in S$ but $i \cdot i=-1$ has imaginary part 0 , so $i^{2} \notin S$.
(f) If $m \neq n$, then one simply cannot multiply two $m \times n$ matrices. So you don't even have an operation. If $m=n$, the binary operation is well-defined. Note that however the zero matrix 0 satisfies $0 A=A 0=0$ for any other matrix A. In particular there cannot be any identity element, since $e 0=e=0$ implies that $e=0$ but $0 A=A 0=0$ would imply that $A=0$. Clearly not every matrix is zero, so there is no identity element.
(g) No, for example $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ has determinant $2 \in \mathbb{Z}$. Its inverse matrix is given by $\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right)$, which does not have integer coefficients. So it does not admit inverse in the same set.
(h) Yes. Note that the operation is associative, since

$$
\begin{aligned}
\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) *\left(x_{3}, y_{3}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}+x_{1} x_{2}\right) *\left(x_{3}, y_{3}\right) \\
& =\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)
\end{aligned}
$$

is equalt to

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right) & =\left(x_{1}, y_{1}\right) *\left(x_{2}+x_{3}, y_{2}+y_{3}+x_{2} x_{3}\right) \\
& =\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}+x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}\right) .
\end{aligned}
$$

Also note that the operation is abelian, so that $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{2}, y_{2}\right) *\left(x_{1}, y_{1}\right)$. We have $(0,0)$ is the identity element, since

$$
(x, y) *(0,0)=(0,0) *(x, y)=(0+x, 0+y+0)=(x, y) .
$$

Given any (x, y), its inverse is given by $\left(-x, x^{2}-y\right)$. Since

$$
\left(-x, x^{2}-y\right) *(x, y)=(x, y) *\left(-x, x^{2}-y\right)=\left(x-x, y+x^{2}-y+x(-x)\right)=(0,0)
$$

2. Note that R is closed under addition, meaning that addition does indeed define a binary operation. For $r_{1}, r_{2} \in R$, there are positive integers m, n so that $2^{m} r_{1}$ and $2^{n} r_{2}$ are integers. Therefore $2^{\max \{m, n\}}\left(r_{1}+r_{2}\right)$ is an integer as well.
Clearly 0 is the identity and it lies in R. And for any $r \in R$, we have its inverse $-r$ is also in R, since $2^{n} r$ is an integer if and only if $2^{n}(-r)$ is an integer.
3. (a) By the relations, we have

$$
1=(-1)(-1)=(-1)(i j k)=i j(-1) k=i j(-k) .
$$

Therefore $i j$ is an inverse of $-k$. On the other hand, we also have

$$
1=(-1)(-1)=(-1) k^{2}=k(-k)
$$

So k is also an inverse of $-k$. By uniqueness of inverse, we have $i j=k$.
Now notice that $(i j k) i=(-1) i=i(-1)$, therefore multiplying $-i$ on the left on both sides yields $j k i=-1$. By replacing i by j, j by k and k by i in the above argument, we obtain $j k=i$.
(b) Note that by $i^{2}=j^{2}=k^{2}=-1$, we have $i^{-1}=-i, j^{-1}=-j$, and $k^{-1}=-k$. So $-k=k^{-1}=(i j)^{-1}=j^{-1} i^{-1}=(-j)(-i)=j i$. Then by part (a), we have $i j=k=-(-k)=-j i$.
4. We may prove the proposition by induction on n. Clearly the equality holds for $n=1$ as both sides are the same. Now suppose the equality holds for some n, then for the $n+1$ case,

$$
(a b)^{n+1}=(a b)(a b)^{n}=(a b)\left(a^{n} b^{n}\right)=a^{2} b a^{n-1} b^{n}=\ldots=a^{n} b a b^{n}=a^{n+1} b^{n+1} .
$$

5. Let A be an object in a category \mathcal{C}, then the composition on $\operatorname{Aut}_{\mathcal{C}}(A)$ is associative by definition of a category. The identity element is given by the identity morphism $\mathbf{1}_{A}$, since by definition for any $f \in \operatorname{Aut}_{\mathcal{C}}(A)$ we have $\mathbf{1}_{A} \circ f=f \circ \mathbf{1}_{A}=f$. Note that $\mathbf{1}_{A} \in \operatorname{Aut}_{\mathcal{C}}(A)$ because $\mathbf{1}_{\mathrm{A}}$ is an isomorphism from A to itself, namely $\mathbf{1}_{A} \circ \mathbf{1}_{A}=\mathbf{1}_{A}$.
Now let $f \in \operatorname{Aut}_{\mathcal{C}}(A)$, since it is an automorphism, there is some $f^{-1} \in \operatorname{Hom}(A, A)$ so that $f \circ f^{-1}=f^{-1} \circ f=\mathbf{1}_{A}$. It follows that f^{-1} in fact is an element of $\operatorname{Aut}_{\mathcal{C}}(A)$ since f^{-1} is an isomorphism.
