THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 (2023-24, Term 2) Honours Algebraic Structures Homework 9 Due Date: 18th April 2024

Compulsory Part

- 1. Let F be a field, and let $a, b \in F$. Is F[x]/(x-a) always isomorphic to F[x]/(x-b)? Justify your answer.
- 2. For each of the following pairs of rings, determine if they are isomorphic or not, and justify your answer:
 - (a) $\mathbb{Z}_2[x]/(x^2+1)$ and $\mathbb{Z}_2[x]/(x^3+1)$.
 - (b) $\mathbb{R}[x]/(x^2)$ and $\mathbb{R}[x]/(x^2 2x + 1)$.
 - (c) $\mathbb{Q}[x]/(x^2)$ and $\mathbb{Q}[x]/(x^2-1)$.
 - (d) $\mathbb{R}[x]/(x^2+1)$ and $\mathbb{R}[x]/(x^2+2)$.
- 3. Let d be an integer which is not the square of an integer. Consider

$$\mathbb{Q}[\sqrt{d}] := \{a + b\sqrt{d} : a, b, \in \mathbb{Q}\} \subset \mathbb{C}.$$

- (a) Show that $\mathbb{Q}[\sqrt{d}]$ is a subring of \mathbb{C} , and hence an integral domain.
- (b) Define a norm $N : \mathbb{Q}[\sqrt{d}] \to \mathbb{Q}$ by $N(a + b\sqrt{d}) = a^2 b^2 d$. Show that $N(\alpha\beta) = N(\alpha)N(\beta)$ for any $\alpha, \beta \in \mathbb{Q}[\sqrt{d}]$, and that $N(\alpha) = 0$ if and only if $\alpha = 0$.
- (c) Prove that $\mathbb{Q}[\sqrt{d}]$ is the smallest subfield of \mathbb{C} containing both \mathbb{Q} and \sqrt{d} .
- (d) Prove that $\mathbb{Q}[\sqrt{d}] \cong \mathbb{Q}[x]/(x^2 d)$.
- 4. Determine if the following polynomials are irreducible in $\mathbb{Q}[x]$:
 - (a) f = x³ + 6x² + 5x + 24257
 (*Hint:* First consider f as an element in Z[x], then determine if its image f̄ in F₂[x] is irreducible.)
 - (b) $f = x^4 + x^2 + x + 1$
 - (c) $f = 4x^3 6x 1$
- 5. Determine if the following rings are fields. Justify your answers.
 - (a) $\mathbb{Q}[x]/(x^{17}+5x^2-10x+45)$
 - (b) $\mathbb{Z}[x]/(x^6 210x 616)$. (Note: It is $\mathbb{Z}[x]$ instead of $\mathbb{Q}[x]$.)
 - (c) $\mathbb{Q}[x]/(4x^3-6x-1)$
 - (d) $\mathbb{R}[x]/(x^{17}+5x^2-10x+45)$

Optional Part

- 1. Let F be a field. Let f, g be relatively prime polynomials in F[x]. Show that if both f and g divide a polynomial h in F[x], then fg divides h.
- 2. Consider the polynomials f = x² x 2 and g = x³ 2x + 1 in Z₅[x]. By adapting the Euclidean Algorithm to Z₅[x], find a, b ∈ Z₅[x] such that af + bg = gcd(f, g). (Here, gcd(f, g) is the unique monic polynomial in Z₅[x] with the property that the ideal

(f,g) is equal to the principal ideal (gcd(f,g)).)

- 3. Express the following polynomials as products of irreducible factors.
 - (a) $x^4 + 1$ in $\mathbb{Z}_2[x]$.
 - (b) $x^3 + 1$ in $\mathbb{Z}_3[x]$.
- 4. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$:
 - (a) $2x^5 + 25x + 210$
 - (b) $17715x^2 + 1234567x + 4561$
 - (c) $x^3 + 6x^2 + 7$
 - (d) $4x^3 3x + \frac{1}{2}$
 - (e) $\frac{1}{3}x^5 x^4 + 1$
 - (f) $x^4 + 5x^2 2x 3$.

(*Hint*: Consider the irreducible factors of the polynomial over \mathbb{F}_2 and \mathbb{F}_3 . What conclusion can one draw?)

5. Let k be a field. Let $f = a_0 + a_1 x + \cdots + a_n x^n$ be a polynomial in k[x] of degree n. Show that if f is irreducible in k[x], then so is:

$$f^* := a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n.$$

6. Let F be a field, p a polynomial in F[x]. Then a theorem in our lecture notes says that the quotient ring F[x]/(p) is a field if and only if p is irreducible in F[x].

Determine if each of the following rings is a field:

- (a) $\mathbb{Q}[x]/(x^3-1)$
- (b) $\mathbb{Q}[x]/(7x^{59}+24x^9+6x+156)$
- (c) $\mathbb{Q}[x]/(x^3+x+1)$
- (d) $\mathbb{Z}[x]/(x^3 + x + 1)$
- (e) $\mathbb{Q}/(17)$
- (f) $\mathbb{Z}/(17)$
- (g) $\mathbb{Z}[x]/(2,x)$
- (h) $\mathbb{Q}[x]/(x^2-3)$
- (i) $\mathbb{R}[x]/(x^2-3)$

- (j) $\mathbb{R}[x]/(x^2+3)$
- (k) $\mathbb{F}_5[x]/(x^2+1)$
- (l) $\mathbb{R}[x]/(x^{17}+x^5+8x^2-x+1)$
- 7. Converse of Euclid's Lemma. Let F be a field, f a polynomial in F[x] with degree ≥ 1 , such that, for $g, h \in F[x]$, the condition $f \mid gh$ implies that $f \mid g$ or $f \mid h$. Show that f is irreducible in F[x].

(Try to prove this without invoking the unique factorization theorem.)