THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 8
 Due Date: 4th April 2024

Compulsory Part

1. Let R be a ring which contains \mathbb{C} as a subring. Show that there cannot be any ring homomorphism $R \rightarrow \mathbb{R}$.
2. Let $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \ldots$ be an increasing/ascending chain of ideals in a ring R. Show that the union $\bigcup_{i=1}^{\infty} I_{i}$ is an ideal in R.
3. Recall that in a commutative ring R, an element $a \in R$ is called nilpotent if $a^{n}=0$ for some positive integer n, and the set N of all nilpotent elements is an ideal, called the nilradical, of R. Show that the quotient ring R / N has no nonzero nilpotent elements. (Such a ring is said to be reduced.)
4. Let R and R^{\prime} be rings, and let I and I^{\prime} be ideals of R and R^{\prime} respectively. Let ϕ be a homomorphism of R into R^{\prime}. Show that ϕ induces a natural ring homomorphism

$$
\phi_{*}: R / I \rightarrow R^{\prime} / I^{\prime}
$$

if $\phi(I) \subseteq I^{\prime}$.
5. Let I be an ideal of a ring R, and let J be an ideal of R containing I. Show that J / I is an ideal of R / I, and there is a natural ring isomorphism

$$
\frac{R / I}{J / I} \cong \frac{R}{J}
$$

6. Is $\mathbb{Z}[i] /(a+b i)$ always isomorphic to $\mathbb{Z} /\left(a^{2}+b^{2}\right)$, for all $a, b \in \mathbb{Z}$? For example, is $\mathbb{Z}[i] /(2+2 i)$ isomorphic to $\mathbb{Z} / 8 \mathbb{Z}$?
Hint: If $\mathbb{Z}[i] /(2+2 i)$ is isomorphic to $\mathbb{Z} / 8 \mathbb{Z}$, then it is isomorphic to $\mathbb{Z}_{8}=\{0,1,2, \ldots, 7\}$. Any isomorphism ϕ from $\mathbb{Z} /(2+2 i)$ to \mathbb{Z}_{8} must send 1 to 1,0 to 0 , and $\bar{i}=i+(2+2 i)$ to some $a \in \mathbb{Z}_{8}$. What properties must this a satisfy? Does there exist $a \in \mathbb{Z}_{8}$ which satisfies all these properties?

Optional Part

1. Prove that the intersection of any set of ideals of a ring is an ideal.
2. Let n be a positive integer. Show that there cannot be a ring homomorphism from \mathbb{Q} to \mathbb{Z}_{n}.
3. Let D be an integral domain, and let $a, b \in D$. Show that $(a)=(b)$ if and only if there exists a unit $u \in D^{\times}$such that $a=u b$.
4. Let R be a commutative ring, and let u be a unit in R. Show that $R /(u)$ is isomorphic to the zero ring $\{0\}$.
5. (a) How many elements are there in $\mathbb{Z}_{12} /(3)$?
(b) How many elements are there in $\mathbb{Z}_{12} /(5)$?
(c) How many equivalence classes are there in $\mathbb{Z}_{2}[x]$ modulo the ideal generated by $x^{3}+1$? Give a representative in $\mathbb{Z}_{2}[x]$ for each of these equivalence classes.
6. Let a, b be integers. Show that $\mathbb{Z}[i] /(a+b i) \cong \mathbb{Z}[i] /(a-b i)$ by performing the following steps:
(a) Define $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}[i] /(a-b i)$ as follows:

$$
\phi(c+d i)=\overline{c-d i}:=c-d i+(a-b i), \quad c, d \in \mathbb{Z}
$$

Show that ϕ is a ring homomorphism.
(b) Show that ϕ is surjective.
(c) Show that the kernel of ϕ is $(a+b i)$.
(d) Apply the First Isomorphism Theorem for rings.
7. Let $R=C[-1,1]$, the ring of continuous real-valued functions on $[-1,1]$, equipped with the usual operations of addition and multiplication for real-valued functions. Let $I=\{f \in R: f(0)=0\}$.
(a) Show that I is an ideal in R.
(b) Show that $R / I \cong \mathbb{R}$.
8. If D is a principal ideal domain and I is an ideal of D, prove that every ideal of the quotient D / I is principal.

