THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 7
 Due Date: 28th March 2024

Compulsory Part

1. Prove that if there exists a homomorphism from the zero ring to a ring R, then R must also be the zero ring.
2. Let m, n be relatively prime integers. Consider the map $\phi: \mathbb{Z}_{m n} \longrightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$:

$$
\phi(a):=\left(a_{m}, a_{n}\right), \quad a \in \mathbb{Z}_{m n}
$$

where a_{l} denotes the remainder when a is divided by l.
Show that ϕ is a ring isomorphism. (This is a version of the Chinese Remainder Theorem.)
3. Let R be a ring. The center $Z(R)$ of R is defined as

$$
Z(R):=\{r \in R: r s=s r \text { for all } s \in R\}
$$

Show that $Z(R)$ is a subring of R.
4. Let R be a commutative ring. For $a \in R$, let:

$$
I_{a}:=\{x \in R: a x=0\}
$$

Show that I_{a} is an ideal of R.
5. Let I, J be ideals of a commutative ring R. Show that the following are also ideals of R :
(a) the intersection $I \cap J$,
(b) the sum

$$
I+J:=\{r \in R: r=a+b \text { for some } a \in I, b \in J\},
$$

and
(c) the product

$$
I J:=\left\{r \in R: r=\sum_{i=1}^{n} a_{i} b_{i} \text { for some } n \in \mathbb{N}, a_{i} \in I, b_{i} \in J\right\} .
$$

6. Recall that an element a of a ring R is called nilpotent if $a^{n}=0$ for some positive integer n. Suppose that R is commutative. Show that the set N of all nilpotent elements in R is an ideal of R (called its nilradical).

Optional Part

1. Let R be the set of 2×2 real matrices of the form:

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right), \quad a, b \in \mathbb{R}
$$

Given that R is a commutative ring under the usual operations of addition and multiplication for matrices, show that R is isomorphic to the field \mathbb{C}.
2. Determine if each of the following maps is a ring homomorphism:
(a)

$$
\begin{gathered}
\phi: \mathbb{Z} \longrightarrow \mathbb{Q} \\
\phi(n)=n^{2}, \quad n \in \mathbb{Z}
\end{gathered}
$$

(b)

$$
\begin{gathered}
\phi: \mathbb{Z}_{6} \longrightarrow \mathbb{Z}_{3} \\
\phi(s)=s_{3}, \quad s \in \mathbb{Z}_{6}
\end{gathered}
$$

where s_{3} denotes the remainder when s is divided by 3 .
(c)

$$
\begin{gathered}
\phi: \mathbb{Z}_{7} \longrightarrow \mathbb{Z} / 3 \mathbb{Z} \\
\phi(s)=s+3 \mathbb{Z}, \quad s \in \mathbb{Z}_{7}
\end{gathered}
$$

where $s+3 \mathbb{Z}$ denotes the residue of s (viewed as an integer) in the quotient ring $\mathbb{Z} / 3 \mathbb{Z}$.
3. Find a ring homomorphism from \mathbb{Z}_{7} to \mathbb{Z}_{5}. If it does not exist, explain why not.
4. (a) Can there be a ring homomorphism from a non-integral domain to an integral domain? Why?
(b) Can there be a ring homomorphism from an integral domain to a non-integral domain? Why?
5. Determine if the subset I is an ideal in the ring R, where:
(a) $R=\mathbb{Z}[x]$ and I is the set of polynomials $\sum_{i=0}^{n} a_{i} x^{i}$ in $\mathbb{Z}[x]$ with the property that a_{0} is odd.
(b) $R=\mathbb{Z}[x]$ and I is the set of polynomials in $\mathbb{Z}[x]$ whose leading coefficients are even.
(c) $R=\mathbb{Z} / 6 \mathbb{Z}$ and I is the set of elements $r+6 \mathbb{Z} \in \mathbb{Z} / 6 \mathbb{Z}$ such that r is an even number. (Note that I is well-defined, since if one representative of $r+6 \mathbb{Z}$ is even, so is any other element in the same congruence class modulo $6 \mathbb{Z}$.)
6. Let m, n be nonzero integers. Show that if $\operatorname{gcd}(m, n)=1$, then $(m n)=(m) \cap(n)$ in the ring \mathbb{Z}.

