THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 6
 Due Date: 21st March 2024

Compulsory Part

1. Find the units in the following rings:
(a) \mathbb{Z}.
(b) The ring R of all real-valued functions on \mathbb{R}.
(c) $D[x]$, where D is an integral domain.
2. Show that the set R^{\times}of units in a ring R is a group under multiplication.
3. Let R be a commutative ring. Show that the binomial theorem holds, i.e.

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

for any $a, b \in R$ and for any positive integer n.
4. An element a of a ring R is said to be nilpotent if $a^{n}=0$ for some positive integer n. Show that if $a, b \in R$ are nilpotent and $a b=b a$, then $a+b$ is also nilpotent.
5. Let D be an integral domain. If there exists a positive integer n such that

$$
n a:=\overbrace{a+\cdots+a}^{n \text { times }}=0
$$

for any $a \in D$, then D is said to be of finite characteristic; in this case, we define the characteristic of D to be

$$
\operatorname{char}(D):=\min \left\{n \in \mathbb{Z}_{>0}: n a=0 \forall a \in D\right\}
$$

If no such positive integer exists, we say that D is of characteristic $\mathbf{0}$, denoted as $\operatorname{char}(D)=0$.
(a) Show that if $n 1 \neq 0$ for any $n \in \mathbb{Z}_{>0}$, then D is of characteristic 0 ; otherwise, we have

$$
\operatorname{char}(D)=\min \left\{n \in \mathbb{Z}_{>0}: n 1=0\right\}
$$

(b) Hence show that the characteristic of an integral domain is either 0 or a prime.

Optional Part

1. Show that $a^{2}-b^{2}=(a+b)(a-b)$ for all a, b in a ring R if and only if R is commutative.
2. Let R be a ring. If $a, b \in R$ are 0 -divisors, is $a+b$ also a 0 -divisor?
3. A ring R such that $a^{2}=a$ for any $a \in R$ is called a Boolean ring. Show that every Boolean ring is commutative.
4. Let R be the set of all real-valued functions f on \mathbb{R} such that $f(0)=0$. Let + and \cdot be the usual addition and multiplication operations for functions.
(a) Show that $f+g \in R$ for all $f, g \in R$.
(b) Show that $f \cdot g \in R$ for all $f, g \in R$.
(c) With respect to + , what is the additive identity element of R, if it exists?
(d) With respect to \cdot, what is the multiplicative identity element of R, if it exists?
5. (a) Is the product of two units in a ring necessarily a unit? If so, prove it; if not, provide a counterexample.
(b) Is the sum of two units in a ring necessarily a unit? If so, prove it; if not, provide a counterexample.
6. Let R be a nonzero commutative ring. Show that the polynomial ring $R[x]$ is an integral domain if and only if R is an integral domain.
7. Let D be an integral domain. Verify that under the convention that $\operatorname{deg} 0:=-\infty$, the following rules hold for all polynomials $f, g \in D[x]$:
(a) $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$.
(b) $\operatorname{deg}(f \pm g) \leq \max \{\operatorname{deg} f, \operatorname{deg} g\}$.

Do we still have the above rules in $R[x]$ if the coefficient ring R is no longer an integral domain?

